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Introduction

The subject combines:

Classical (“Italian”) projective geometry: work of Severi,
Terracini, Scorza, Fano, ...

Work centering around the Hartshorne Conjecture on
manifolds of small codimension, by: Barth–Van de Ven,
Fulton–Hansen, Zak, Faltings, Netsvetaev,
Bertram–Ein–Lazarsfeld, Landsberg, ...

Work on dual defective manifolds by Ein,
Beltrametti–Fania–Sommese, ...

(Part of) Mori Theory and its applications to Fano manifolds:
work of Mori, Mukai, Hwang, Mok, Wísniewski, ...

Context: k = C.
X ⊂ PN smooth irreducible nondegenerate of dimension n and
codimension c.
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Prime Fano manifolds of high index

Definition

X ⊂ PN is a prime Fano manifold of index i(X ) if its Picard group
is generated by the hyperplane section class H and −KX = i(X )H
for some positive integer i(X ).

Examples show that prime Fanos of high index other than
complete intersections are very special, for instance:

they are quadratic, i. e. scheme theoretically defined by
quadratic equations;

they have “small codimension”.

We say that X has “high index” if i(X ) ≥ n + 3

2
. Dual defective

and some special secant defective manifolds (to be defined later)
provide interesting examples.
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Definition

X ⊂ PN is covered by lines if for any general point x ∈ X there
exists a line ` such that x ∈ ` ⊂ X .

Mori proved that if X is a prime Fano manifold with

i(X ) ≥ n + 2

2
, then X is covered by lines. Another (classical)

example is given by Fano complete intersections with
i(X ) ≥ 2.
If x ∈ X is a general point, denote by Lx ⊂ Pn−1 the variety
of lines contained in X and passing through x .
The main idea in what follows is the strong interaction
between the geometry of X ⊂ PN and that of Lx ⊂ Pn−1. The
higher the dimension of Lx , the stronger the interaction is.
In the special case of prime Fanos, dimLx = i(X )− 2. So,

i(X ) ≥ n + 3

2
is equivalent to dimLx ≥

n − 1

2
.
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Manifolds covered by lines and the Hartshorne Conjecture

Let X ⊂ PN be a manifold covered by lines.

Let F be an irreducible component of the Hilbert scheme of
lines on X , such that locus(F) = X .

Let Fx ⊂ Pn−1 denote the variety of lines from F passing
through the general point x ∈ X .

Notation

a =: deg N`/X where [`] ∈ F .

Remark

a ≥ 0; a = dimFx , where x ∈ X is a general point.
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Theorem (A)

Assume a ≥ n − 1

2
. Then

1 (Beltrametti–Sommese–Wísniewski) There is a Mori
contraction contF : X → Z of lines from F ; F general fiber of
contF , dim F = f , with a + 1 ≤ f ≤ n;

2 (Wísniewski) F is a prime Fano manifold covered by lines and
i(F ) = a + 2;

3 (Hwang) Fx ⊆ Pf−1 is smooth irreducible nondegenerate.

Let us recall the famous Hartshorne Conjecture:

Conjecture

(HC) If n ≥ 2c + 1, then X ⊂ PN is a complete intersection.
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Definition

A line l ⊂ X is called a contact line if there is a hyperplane H ⊂ PN

containing the (projective) tangent space to X at all points of l .

Note that a nondegenerate complete intersection does not contain
contact lines.

Theorem (1)

Assume n ≤ 2c.

1 If a ≥ n − 1

2
, then all lines in F are contact lines;

2 if Pic(X) is cyclic, then a ≤ 3(n − 2)

4
. Accepting the truth of

the Hartshorne Conjecture, the better bound a ≤ 2(n − 1)

3
holds.
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Suppose that X is scheme theoretically an intersection of m
hypersurfaces of degrees d1 ≥ d2 ≥ . . . ≥ dm. We assume
implicitly that m is minimal, i.e. none of the hypersurfaces
contains the intersection of the others.

From now on we let

Notation

a := dimLx

and
d :=

∑c
i=1(di − 1).

The next results relate equations of X in PN to those of Lx in
Pn−1.
X is called conic-connected if two general points x , x ′ ∈ X belong
to a conic contained in X .
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Theorem (2)

For X ⊂ PN the following results hold:

1 If Lx ⊂ Pn−1 is nonempty, it is set theoretically defined by (at
most) d equations; in particular, we have a ≥ n − 1− d.

2 If d ≤ n − 1, then Lx 6= ∅; assume moreover that n ≥ c + 2 if
X is quadratic. Then

X ⊂ PN is a prime Fano manifold and i(X ) = a + 2;
the following conditions are equivalent:

(i) X ⊂ PN is a complete intersection;
(ii) Lx ⊂ Pn−1 is a complete intersection of codimension d;
(iii) a = n − 1− d.
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Theorem (3)

Assume that a ≥ n − 1

2
and Lx ⊂ Pn−1 is a nondegenerate

complete intersection. Then X is conic-connected, a ≤ n − c − 1
and n ≥ 2c + 1.

Next we consider the following weaker form of the (HC):

Conjecture

(HCF) If n ≥ 2c + 1 and X is Fano, then X is a complete
intersection.
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If true, the (HCF) would imply the following two results:

If n ≥ degree(X ) + 1 then X is a complete intersection, unless
it is projectively equivalent to G(1, 4) ⊂ P9;
cf. P. Ionescu, On manifolds of small degree, Comment.
Math. Helv. 2008.
Note that the bound is optimal, as the degree of the Segre
embedding P1 × Pn−1 ⊂ P2n−1 is n.

If X is covered by lines, a ≥ n − 1

2
and Lx ⊂ Pn−1 is a

nondegenerate complete intersection, then X is a complete
intersection too.

The following results show that all expectations are fulfilled in the
quadratic case.
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Theorem (4)

Assume that X is quadratic. Then:

1 If n ≥ c + 1 then X is covered by lines. Moreover, Lx ⊂ Pn−1

is scheme theoretically defined by c independent quadratic
equations.

2 If n ≥ c + 2 then X is a prime Fano manifold. Moreover, the
following conditions are equivalent:

(i) X ⊂ PN is a complete intersection;
(ii) Lx ⊂ Pn−1 is a complete intersection;

(iii) dim(Lx) = n − 1− c;
(iv) NX/PN (−1) is ample.

3 (HC) If n ≥ 2c + 1 then X is a complete intersection.

4 If X is a prime Fano manifold of index i(X ) ≥ 2n+5
3 , then X is

a complete intersection.
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Theorem (5)

Assume that X is quadratic. If n = 2c and X is not a complete
intersection, then it is projectively equivalent to one of the
following:

1 G(1, 4) ⊂ P9, or

2 S10 ⊂ P15.
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Defective manifolds

Definition

Secant variety of X : SX = closure of the locus of secants to
X ⊂ PN , dim SX = 2n + 1− δ, δ ≥ 0 secant defect.
If δ > 0, X is secant defective.

Two cases:

SX 6= PN , then X admits a nontrivial projection. No such
examples with δ > 8 are known (!).

SX = PN , then X is of “small codimension”, i.e. n ≥ c.
Topological obstructions (Barth Theorem).

Classification results when n is small were classically obtained
(Severi, Scorza). In general understanding secant defective mani-
folds is difficult, so we study a special case; it leads to rationally
connected manifolds, where tools from Mori theory may be applied.
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For a general point p ∈ SX consider the cone Cp(X ) of
secants through p. Its trace on X is the entry locus with
respect to p, denoted Σp(X ). Σp(X ) is of pure dimension δ
and connects two general points of X . Not much is known on
the structure of Σp(X ).

We may consider the case when the cone Cp(X ) is linear as
being the simplest. Then Σp(X ) is a quadric (assume X is
not a hypersurface).

This leads to the following definition:

Definition

X is a local quadratic entry locus variety (LQEL) if for any
x , x ′ ∈ X general points there is a quadric Qδ

xx ′ , x , x ′ ∈ Qδ
xx ′ ⊆ X .

Remark

δ is the maximal possible value.
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The next theorem may be found in the following papers:

F. Russo, Varieties with quadratic entry locus. I, Math. Ann. 2009.
——, F. Russo, Varieties with quadratic entry locus. II,
Compositio Math. 2008.
——, F. Russo, Conic-connected manifolds, J. Reine Angew.
Math. 2010.
B. Fu, Inductive characterizations of hyperquadrics, Math. Ann.
2008.
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Theorem (B)

Assume X ⊂ PN is a LQEL manifold. Then:

1 X is a Fano and rational manifold with b2(X ) ≤ 2;

2 if b2(X ) = 2 then X is one of: Pa × Pb or its hyperplane
section, or BlL(Pn), L a linear space, embedded by quadrics
through L;

3 if b2 =1, X ∼=v2(Pn) or Pic(X )=Z〈H〉 and i(X )=
n + δ

2
;

4 if δ ≥ 3 then Lx ⊂ Pn−1 is LQEL, SLx = Pn−1,

dimLx =
n + δ

2
− 2, δ(Lx) = δ − 2. If δ ≥ n

2
, complete

classification; it implies Zak’s classification of Severi varieties;

5 X complete intersection iff X ∼= Qn(δ = n);

6 X 6∼= Qn then δ ≤ n + 8

3
; equality cases are classified.
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− 2, δ(Lx) = δ − 2. If δ ≥ n
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, complete

classification; it implies Zak’s classification of Severi varieties;

5 X complete intersection iff X ∼= Qn(δ = n);

6 X 6∼= Qn then δ ≤ n + 8

3
; equality cases are classified.
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Conjecture

Assume X is a LQEL manifold with Pic(X ) ∼= Z〈H〉. Then X is
obtained by linear sections/isomorphic projections from a rational
homogeneous manifold.

“Corollary”

Complete classification of LQEL manifolds; δ ≤ 8 if X 6∼= Qn.
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Definition

The dual variety of X ⊂ PN , denoted X∨, is q(Z ) ⊂ (PN)∨ where

Z = {(x ,H) | TX ,x ⊂ H} ⊂ X × (PN)∨

and q : Z → (PN)∨ is the natural projection.
dim Z = N − 1.
dim X∨ = N − 1− k, k ≥ 0 is the dual defect.
When k > 0, X is dual defective.

Classical fact: If k > 0, X is covered by linear Pk ’s.
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Definition

X ⊂ PN is a scroll if
X = P(E )→ Y (1)

where E is a vector bundle of rank at least two over the projective
manifold Y and the fibers of (1) are linearly embedded.

If X is a scroll with fiber F and dim F > dim Y then X is dual
defective and k = dim F − dim Y .

The study of dual defective manifolds was begun by Mumford
in 1978.

Later on Landman and Zak proved that n ≡ k (mod 2) if
k > 0.

Zak’s theorem on tangencies yields k ≤ c − 1.

In two famous papers (1985–86) L. Ein proved the following
theorems.
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Theorem (Ein)

a =
n + k − 2

2
for the natural covering family of lines.

Theorem (Ein)

If X is not a scroll, then k ≤ n − 2

2
; moreover, equality holds iff

X ∼= Gr(1, 4) or S10.

We improve Ein’s second theorem as follows:

Theorem (6)

If X is not a scroll then k ≤ n + 2

3
; moreover, equality holds iff

X ∼= S10.
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Remark

This result is optimal. The proof is completely different from Ein’s
and uses Lx in an essential way.

The proof also makes use of the following result:

Theorem (Beltrametti–Fania–Sommese)

Let X be a dual defective manifold and consider the contraction
cont[`] : X → Z (which exists by a previous result). If F is a
general fiber of the contraction, we have

k(F ) = k(X ) + dim Z .

This remarkable result reduces the classification of dual defective
manifolds to the case when Pic(X ) = Z〈H〉.
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Conjecture

If X is a dual defective manifold with Pic(X ) = Z〈H〉, then X is a
LQEL manifold.

If Pic(X ) = Z〈H〉, X is dual defective and a LQEL manifold, then
we have δ = k + 2.

“Corollary”

Complete classification of dual defective manifolds; k ≤ 4 if X is
not a scroll.
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The bounds δ ≤ n + 8

3
and k ≤ n + 2

3
coincide when

δ = k + 2.

Where does the bound come from ?

The bound expresses precisely the “Hartshorne condition”
dimLx ≤ 2 codim (Lx ,Pn−1)!

This is compatible with the fact that a LQEL may be a
complete intersection only if it is a quadric, while a dual
defective manifold may be a complete intersection only if it is
linear (a case leading to scrolls).
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