(-1)

Gauss maps in positive characteristic

KAJI, Hajime (Waseda University) 楫 元 (早稲田大学)

2010 Algebra and Geometry of Subvarieties of Projective Space in honor of Professor Fyodor L. Zak on his 60th birthday

KAIST, Daejeon, KOREA

January 28, 2010

0 Introduction

This is a story of projective algebraic geometry in **positive characteristic**. I survey a history of studies on **Gauss maps** of projective varieties in positive characteristic, and state some recent results.

0 Introduction

This is a story of projective algebraic geometry in **positive characteristic**. I survey a history of studies on **Gauss maps** of projective varieties in positive characteristic, and state some recent results.

The theme of those studies is originally condensed into the following:

Problem ([Kleiman (1987)])

"It would be good to have an example of a smooth curve X such that every tangent makes 2 or more contacts or to prove that such X do not exist."

S.Kleiman (with A.Thorup), "Intersection theory and enumerative geometry: A decade in review," in "Algbraic Geometry — Bowdoin 1985," S.J.Bloch (ed.) Proc. Symposia Pure Math. 46–Part 2 (1987), pp. 321–370.

тос

- 1. Examples and the definition of a Gauss map
- 2. Gauss maps of projective curves
- 3. Gauss maps of projective varieties
- 4. Recent results
- 5. Geometry of rational curves on algebraic varieties
- 6. Final comments

/k an algebraically closed field of characteristic $p \geq 0$

1 Examples and the definition of a Gauss map

Example 1 ([Wallace (1956)])

$$X: x^{p+1} + y^{p+1} + z^{p+1} = 0 \subseteq \mathbb{P}^2 \quad (p > 0)$$

• $T_PX = \{a^px + b^py + c^pz = 0\}$ for $P = (a:b:c) \in X.$

• the contact multiplicity: $i(X,T_PX;P)=p$ for a general $P\in X.$ In fact, $X\cap T_PX=pP+Q$ with $Q:=(a^{p^2}:b^{p^2}:c^{p^2}).$

1 Examples and the definition of a Gauss map

Example 1 ([Wallace (1956)])

$$X: x^{p+1} + y^{p+1} + z^{p+1} = 0 \subseteq \mathbb{P}^2 \quad (p > 0)$$

• $T_P X = \{ a^p x + b^p y + c^p z = 0 \}$ for $P = (a : b : c) \in X$.

• the contact multiplicity: $i(X, T_PX; P) = p$ for a general $P \in X$.

In fact, $X\cap T_PX=pP+Q$ with $Q:=(a^{p^2}:b^{p^2}:c^{p^2}).$

• the dual map is given by

 $\gamma: X \to \check{\mathbb{P}}^2; P = (a:b:c) \mapsto [T_P X] = (a^p:b^p:c^p),$ where $\mathbb{P}^2 \supseteq \{\xi x + \eta y + \zeta z = 0\} \leftrightarrow (\xi:\eta:\zeta) \in \check{\mathbb{P}}^2.$ • the dual curve $X^* := \gamma(X) = \{[T_P X] \in \check{\mathbb{P}}^2 | P \in X\}.$

 $\leadsto X^* = \{\xi^{p+1} + \eta^{p+1} + \zeta^{p+1} = 0\} \simeq X.$

Why?

1 Examples and the definition of a Gauss map

Example 1 ([Wallace (1956)])

$$X: x^{p+1} + y^{p+1} + z^{p+1} = 0 \subseteq \mathbb{P}^2 \quad (p > 0) \in \mathbb{P}^2$$

 $\bullet T_PX = \{a^px + b^py + c^pz = 0\}$ for $P = (a:b:c) \in X.$

• the contact multiplicity: $i(X, T_PX; P) = p$ for a general $P \in X$.

In fact, $X\cap T_PX=pP+Q$ with $Q:=(a^{p^2}:b^{p^2}:c^{p^2}).$

• the dual map is given by

 $\gamma: X \to \check{\mathbb{P}}^2; P = (a:b:c) \mapsto [T_P X] = (a^p:b^p:c^p),$ where $\mathbb{P}^2 \supseteq \{\xi x + \eta y + \zeta z = 0\} \leftrightarrow (\xi:\eta:\zeta) \in \check{\mathbb{P}}^2.$ • the dual curve $X^* := \gamma(X) = \{[T_P X] \in \check{\mathbb{P}}^2 | P \in X\}.$ $\rightsquigarrow X^* = \{\xi^{p+1} + \eta^{p+1} + \zeta^{p+1} = 0\} \simeq X.$ $\because (a^p)^{p+1} + (b^p)^{p+1} + (c^p)^{p+1}$ $= (a^{p+1})^p + (b^{p+1})^p + (c^{p+1})^p$ $= (a^{p+1} + b^{p+1} + c^{p+1})^p = 0 (\because (a:b:c) \in X). \square$ $\rightsquigarrow \gamma =$ the Frobenius morphism of X (= X^{**} via $\mathbb{P}^2 = \check{\mathbb{P}}^2$). • $K(X)/K(X^*)$ purely inseparable of degree p.

Example 2 (strange curve)

$$X:y=x^p\subseteq \mathbb{A}^2 \quad (p>0)$$

•
$$T_PX = \{y-a^p=0\}$$
 for $P=(a,a^p)\in X$ ($\because \frac{dy}{dx}=px^{p-1}=0$)

 $\label{eq:all tangent lines are parallel to x-axis, i.e., all proj tangent lines η a common pt $(1:0:0) \in \mathbb{P}^2$, where $\mathbb{A}^2 = \{(x:y:1))\} \subseteq \mathbb{P}^2$. }$

 $\rightsquigarrow X$ a "strange" curve.

Example 2 (strange curve)

$$X:y=x^p\subseteq \mathbb{A}^2 \quad (p>0)$$

•
$$T_PX = \{y-a^p=0\}$$
 for $P=(a,a^p)\in X$ ($\because \frac{dy}{dx}=px^{p-1}=0$)

 \rightarrow all tangent lines are parallel to x-axis, i.e.,

all proj tangent lines \ni a common pt $(1:0:0) \in \mathbb{P}^2$, where $\mathbb{A}^2 = \{(x:y:1))\} \subseteq \mathbb{P}^2$.

- $\rightsquigarrow X$ a "strange" curve.
- the dual map is given by

$$\gamma: X \dashrightarrow X^*; P = (a, a^p) \mapsto [T_P X] = (0:1:-a^p)$$

 $\sim X^* = \{\xi = 0\}$ a line in $\check{\mathbb{P}}^2$.
 $\sim X^{**} = \{(1:0:0)\} \neq X$ via $\check{\mathbb{P}}^2 = \mathbb{P}^2$.

- $K(X)/K(X^*)$ purely inseparable of degree p.
- \bullet

Example 2 (strange curve)

$$X:y=x^p\subseteq \mathbb{A}^2 \quad (p>0)$$

•
$$T_PX = \{y-a^p=0\}$$
 for $P=(a,a^p)\in X$ ($\because \frac{dy}{dx}=px^{p-1}=0$)

 \rightarrow all tangent lines are parallel to x-axis, i.e.,

all proj tangent lines \ni a common pt $(1:0:0) \in \mathbb{P}^2$, where $\mathbb{A}^2 = \{(x:y:1))\} \subseteq \mathbb{P}^2$.

- $\rightsquigarrow X$ a "strange" curve.
- the dual map is given by

$$egin{aligned} &\gamma:X\dashrightarrow X^*;P=(a,a^p)\mapsto [T_PX]=(0:1:-a^p)\ &
otacrine X^*=\{\xi=0\} ext{ a line in }\check{\mathbb{P}}^2.\ &
otacrine X^{**}=\{(1:0:0)\}
eq X ext{ via }\check{\check{\mathbb{P}}}^2=\mathbb{P}^2. \end{aligned}$$

- $K(X)/K(X^*)$ purely inseparable of degree p.
- Note that $X \text{ smooth} \Leftrightarrow p = 2$.

Fact ([Lluis (1962)], [Samuel (1966)])

The only non-linear smooth strange curve X in \mathbb{P}^N is a conic in p = 2.

Definition (Gauss map)

For a non-linear algebraic variety X of dim n in \mathbb{P}^N , $\gamma: X \dashrightarrow \mathbb{G}(n,N); x \mapsto T_x X,$

where

 $T_xX\subseteq \mathbb{P}^N$ the proj tangent space to X at a smooth pt x.

Remark

 $N=2, n=1 \Rightarrow \gamma = {
m the \ dual \ map} \ X \dashrightarrow X^*.$

Problem ([Kleiman (1987)]) rephrased as:

 \exists ? a smooth proj curve X s.t. γ has separable degree > 1 or prove that such an X does not exist.

2 Gauss maps of projective curves

Remark For a proj curve X,

 $p=0 \Rightarrow \gamma$ is birational, as is classically well known.

Observation

In positive characteristic case various strange phenomina on tangency have been observed, and seem to be caused by the inseparability of Gauss maps γ .

Fact

2 Gauss maps of projective curves

Remark For a proj curve X,

 $p=0 \Rightarrow \gamma$ is birational, as is classically well known.

Observation

In positive characteristic case various strange phenomina on tangency have been observed, and seem to be caused by the inseparability of Gauss maps γ .

Fact ([K (1989)]) For a proj curve X,

• γ is separable $\Rightarrow \gamma$ is birational (classically known for $X \subseteq \mathbb{P}^2$).

• $p \neq 2 \Leftrightarrow \exists$ a proj embedding of X s.t. γ is birational.

biregular embedding into some proj space

Birational embeddings of smooth proj curves (possibly singular case)

Theorem 1([Wallace (1956)], [Kleiman (1986)]) \forall curve $X' \subseteq \check{\mathbb{P}}^2$ in p > 0, $\forall s \ge 1$, $\forall r \ge 1$, \exists a curve $X \subseteq \mathbb{P}^2$ s.t.([K(X) : K(X')] =

$$\gamma(X) = X'$$
 & $\begin{cases} [K(X) : K(X')]_s \equiv s, \\ [K(X) : K(X')]_i = p^r. \end{cases}$

Theorem 2 ([K (1989)])

 \forall inseparable ext K/K' of function fields of dim 1, \exists a proj model $X \subseteq \mathbb{P}^N$ of K s.t.

 $K/K' = K(X)/K(\gamma(X)).$

Remark

Those curves X in Theorems above are singular in most cases. So, it would be natural to assume the smoothness in the problem.

Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

 \forall inseparable finite extension $K(\mathbb{P}^1)/K'$ of function fields, \exists a smooth rational curve $X \subseteq \mathbb{P}^N$ s.t.

 $K(\mathbb{P}^1)/K' = K(X)/K(\gamma(X)).$

Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

 \forall inseparable finite extension $K(\mathbb{P}^1)/K'$ of function fields, \exists a smooth rational curve $X \subseteq \mathbb{P}^N$ s.t.

 $K(\mathbb{P}^1)/K' = K(X)/K(\gamma(X)).$

Proof

- Take $f : \mathbb{P}^1 \to \mathbb{P}^1$ a finite morphism. $\leftrightarrow K(\mathbb{P}^1)/K'$ a given insep finite extension ($\rightsquigarrow K' \simeq K(\mathbb{P}^1)$) • embed its graph $\Gamma_f := \{(x, f(x)) | x \in \mathbb{P}^1\} \subseteq \mathbb{P}^1 \times \mathbb{P}^1$ into \mathbb{P}^3
 - so that $\mathbb{P}^1 \times \mathbb{P}^1$ is a quadric surface.
- X := the image of Γ_f in \mathbb{P}^3 .
 - $\rightsquigarrow f$ is recovered as the Gauss map γ of X.
 - \because every fibre $\mathbb{P}^1 imes \{y\}$ is a line in \mathbb{P}^3 ,

tangent to X because of the inseparability of f. \Box

Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K' of the function field K(X) shows up as $K(\gamma(X))$, the function field of the image of the Gauss map ι for a biregular embedding of X into some \mathbb{P}^M ?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

$$\mathcal{K}' := \left\{ K(oldsymbol{\gamma}(X)) \subseteq K(X) \, \middle| oldsymbol{\gamma} \ ext{the Gauss map of} \ ext{a biregular embedding of } X
ight\}$$

Remark

Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K' of the function field K(X) shows up as $K(\gamma(X))$, the function field of the image of the Gauss map ι for a biregular embedding of X into some \mathbb{P}^M ?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

$$\mathcal{K}' := \left\{ K(\boldsymbol{\gamma}(X)) \subseteq K(X) \left| oldsymbol{\gamma}
ight. egin{array}{c} ext{the Gauss map of} \ ext{a biregular embedding of } X \end{array}
ight\}$$

Remark

With this notation, the known results are described as follows:

- $p = 0 \Rightarrow \mathcal{K}' = \{K(X)\}$ for any X.
- $K' \in \mathcal{K}'$ & K(X)/K' separable $\Rightarrow K' = K(X)$.
- $p \neq 2 \Leftrightarrow K(X) \in \mathcal{K}'$ for any X.
- For $X = \mathbb{P}^1$, $\mathcal{K}' \setminus \{K(\mathbb{P}^1)\} = \{K' \subseteq K(\mathbb{P}^1) | K(\mathbb{P}^1) / K' \text{ finite insep ext}\}.$

Elliptic curves

Theorem 4 ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

$$\mathcal{K}' \setminus \{K(X)\} = egin{cases} K(X') \subseteq K(X) & X o X' ext{ insep isogeny, and} \ \hat{X} \leftarrow \hat{X}' ext{ separable cyclic} \ & = egin{cases} K' \subseteq K(X) & K(X)/K' ext{ insep finite, and} \ K'_s/K' ext{ cyclic of deg}
ot \equiv 0 ext{ mod } p \end{bmatrix}.$$

where

$$\hat{X} := \operatorname{Pic}^0 X$$
 the dual of X , and K'_s the separable closure of K' in $K(X)$.

$$\begin{array}{ll} \mbox{Recall that for an elliptic curve X in char $p>0$,} \\ X \mbox{ is said to be } \begin{cases} \mbox{ordinary} & \mbox{if $r=1$,} \\ \mbox{supersingular} & \mbox{if $r=0$,} \\ \end{cases} \\ \mbox{where r is the p-rank of X defined by} \\ \# \ker(p_X: X \to X; x \mapsto p \cdot x) = p^r. \quad (\rightsquigarrow r=0,1) \end{cases}$$

Elliptic curves

Theorem 4 ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

$$\mathcal{K}' \setminus \{K(X)\} = egin{cases} K(X') \subseteq K(X) & X o X' ext{ insep isogeny, and} \ \hat{X} \leftarrow \hat{X}' ext{ separable cyclic} \ & = egin{cases} K' \subseteq K(X) & K(X)/K' ext{ insep finite, and} \ K'_s/K' ext{ cyclic of deg}
ot \equiv 0 ext{ mod } p \end{bmatrix}.$$

where

 $\hat{X} := \operatorname{Pic}^0 X$ the dual of X, and K'_s the separable closure of K' in K(X).

Theorem 5 ([K (1989)])

If X is a supersingular elliptic curve, then

$$\mathcal{K}' = egin{cases} \{K(X)^2, K(X)^{2^2}\}, & ext{if } p = 2, \ \{K(X), K(X)^p\}, & ext{if } p > 2. \end{cases}$$

Key observation

Theorem 6 ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K(X)/K', TFAE:

- 1. $K' \in \mathcal{K}'$;
- **2.** \exists a vector bundle \mathcal{E} of rank 2 on X' and \exists are each odding as Y (\square) of t
 - \exists an embedding $\varphi: X \hookrightarrow \mathbb{P}(\mathcal{E})$ s.t.

$$K(X)/K' = K(\varphi(X))/K(X'),$$

where X' a smooth proj model of K'.

Key observation

Theorem 6 ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K(X)/K', TFAE:

1. $K' \in \mathcal{K}'$;

2. \exists a vector bundle \mathcal{E} of rank 2 on X' and \exists are explicitly and V (\downarrow $\mathbb{D}(\mathcal{E})$) at

 \exists an embedding $\varphi: X \hookrightarrow \mathbb{P}(\mathcal{E})$ s.t.

$$K(X)/K' = K(\varphi(X))/K(X'),$$

where X' a smooth proj model of K'.

Remark The idea of the proof of $(1) \leftarrow (2)$:

- ullet embed $\mathbb{P}(\mathcal{E})$ into some \mathbb{P}^M as a scroll, and
- consider $\iota: X \stackrel{\varphi}{\hookrightarrow} \mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^M$, the composite morphism. \rightsquigarrow the image of any fibre of $\mathbb{P}(\mathcal{E}) \to X'$ is a line tangents to $\iota(X)$ in \mathbb{P}^M , and the Gauss map of $\iota(X) \underset{\text{bir}}{\sim} X \to X'$ defined via φ .

Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus $g \ge 2$. $F: X \to X'$ the Frobenius morphism. Then TFAE:

1. $K(X)^p \in \mathcal{K}'$ (i.e., $\exists \iota : X \hookrightarrow \mathbb{P}^M$ with $\gamma \underset{\text{bir}}{\sim}$ the Frob morph); 2. \exists a stable vector bundle \mathcal{E} on X', and $\exists \mathcal{L} \in \operatorname{Pic} X$ s.t.

$$F^* \mathcal{E} \simeq \mathcal{P}^1_X(\mathcal{L}).$$

where

 $\mathcal{P}^1_X(\mathcal{L})$ the bundle of principal parts of first order of \mathcal{L} .

Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus $g \ge 2$. $F: X \to X'$ the Frobenius morphism. Then TFAE:

1.
$$K(X)^p \in \mathcal{K}'$$
 (i.e., $\exists \iota : X \hookrightarrow \mathbb{P}^M$ with $\gamma \underset{\mathsf{bir}}{\sim}$ the Frob morph);

2. \exists a stable vector bundle \mathcal{E} on X', and $\exists \mathcal{L} \in \operatorname{Pic} X$ s.t.

where

 $F^*\mathcal{E} \simeq \mathcal{P}^1_{\mathcal{V}}(\mathcal{L}).$

 $\mathcal{P}^1_X(\mathcal{L})$ the bundle of principal parts of first order of \mathcal{L} .

Remark The idea of the proof of $(1) \leftarrow (2)$:

Apply the Key Observation (Theorem 6) with the stable \mathcal{E} above and

$$arphi:X\simeq \mathbb{P}(\mathcal{L})\hookrightarrow \mathbb{P}(\mathcal{P}^1_X(\mathcal{L}))\simeq \mathbb{P}(F^*\mathcal{E}) o \mathbb{P}(\mathcal{E}),$$

which turns out to be an embedding.

 \exists a natural exact sequence,

$$0 o \Omega^1_X \otimes \mathcal{L} o \mathcal{P}^1(\mathcal{L}) o \mathcal{L} o 0.$$

Definition (Tango-Raynaud curve) X is a Tango-Raynaud curve $\Leftrightarrow \exists \mathcal{N} \in \operatorname{Pic} X' \text{ s.t.}$ • $F^* \mathcal{N} \simeq \Omega^1_X$ • $F^* : H^1(X', \mathcal{N}^{\vee}) \to H^1(X, F^* \mathcal{N}^{\vee})$ not injective where $F : X \to X'$ the Frobenius morphism.

Remark

A Tango-Raynaud curve →

∃ alg surfaces for which the Kodaira vanishing theorem does not hold.

Example

Definition (Tango-Raynaud curve)

$$X$$
 is a Tango-Raynaud curve
 $\Leftrightarrow \exists \mathcal{N} \in \operatorname{Pic} X' \text{ s.t.}$
• $F^* \mathcal{N} \simeq \Omega^1_X$
• $F^* : H^1(X', \mathcal{N}^{\vee}) \to H^1(X, F^* \mathcal{N}^{\vee})$ not injective
where $F : X \to X'$ the Frobenius morphism.

Remark

A Tango-Raynaud curve →

∃ alg surfaces for which the Kodaira vanishing theorem does not hold.

Example (Theorem 7) For a Tango-Raynaud curve X of $g \ge 2$, $(0 \to \mathcal{O}_{X'} \to \mathcal{E} \to \mathcal{N} \to 0) \leftrightarrow 0 \neq \mathbf{\xi} \in \ker F^* \subseteq \operatorname{Ext}^1_{X'}(\mathcal{N}, \mathcal{O}_{X'})$ \uparrow satisfies (2) in Theorem 7. In fact, \mathcal{E} stable, and $F^*\mathcal{E} \simeq \mathcal{O}_X \oplus \Omega^1_X = \mathcal{P}^1_X(\mathcal{O}_X).$ Generic injectivity of Gauss map

Theorem 8 ([K (1989)])

X a proj curve of genus g in \mathbb{P}^N . g' the genus of the normalization of $\gamma(X)$. Then:

X smooth or nodal $\Rightarrow g = g'$.

In particular:

 $g \geq 2 \Rightarrow \gamma$ birational or purely inseparable, i.e., generically injective.

Theorem 9 ([K (1991)], [Kleiman-Piene (1991)])

X a proj curve of genus g in \mathbb{P}^N $u := \deg \Omega^1_{\widetilde{X}/\mathbb{P}^N}$ the # of cusps of X (\widetilde{X} the normalization of X) Then:

 $\nu < 2g - 2 \Rightarrow \gamma$ generically injective.

Theorem 10 ([Kleiman-Piene (1991)]) With the same notation as above,

s the separable degree of $\gamma.$ Then:

$$2s(g-g') \le (s-1)\nu.$$

In particular, $\nu = 0 \Rightarrow g = g'$.

Brief Summary (proj curves):

• possibly singular case:

orall insep finite ext K/K' of function fields of dim 1, \exists a proj model X of K s.t. $K/K' = K(X)/K(\gamma(X)).$

possible to take X to be smooth for rational K.

• smooth case:

 $\left. \begin{array}{c} \text{rational curves} \\ \text{ordinary elliptic curves} \end{array} \right\} \quad \Rightarrow \quad \begin{array}{c} \text{the Gauss map has} \\ \text{separable degree} > \end{array}$

∃ a biregular embedding s.t. the Gauss map has separable degree > 1, i.e., not generically injective.

$$g(X) = g(\gamma(X)).$$

supersingular elliptic curves higher genus curves

the Gauss map of
 ⇒ any biregular embedding is generically injective.

3 Gauss maps of projective varieties

The Gauss map of a proj var X of dim n in \mathbb{P}^N is $\gamma: X \dashrightarrow \mathbb{G}(n,N); x \mapsto T_x X.$

Fact

- [Griffiths-Harris (1979)]: $p = 0 \Rightarrow$ a gen fibre of γ is linear.
- [Zak (1993?)]: X smooth $\Rightarrow \gamma$ is finite in arbitrary char.

Hence, X smooth in $p = 0 \Rightarrow \gamma$ is birational finite.

Generic injectivity of Gauss map

Theorem 11 ([Kleiman-Piene (1991)])

X a smooth complete intersection of dim n and degree $\geq 2.$ Assume:

 $\gamma(X)$ smooth. Then:

$$c_n(X)=c_n(\gamma(X)).$$

Theorem 12 The generic injectivity of the Gauss map holds for

- 1. [Kleiman-Piene (1991)]: a smooth complete int of dim 2.
- 2. [K-Noma (1997)]: a smooth proj var with generically ample cotangent bundle.
- 3. [Noma (1997)]: a smooth weighted complete int of general type with dim \geq 3.
- 4. [Noma (1997)]: a smooth proj var of dim 2 or 3 with μ -semistable tangent bundle.

Gauss map with non-trivial separable degree

Theorem 13 ([Noma (2001)])

1. \exists examples of proj var with an embedding s.t. the Gauss map of separable degree > 1 as follows:

(a) a smooth var of non-general type (i.e., Kodaira dim $\kappa < n$). (b) a normal var of general type with only isolated sing.

2. \exists an embedding of a proj space \mathbb{P}^n into some proj space s.t.

the Gauss map has separable degree > 1 and its image = a normal var of general type. A new direction: a general fibre of Gauss map

Example ([Fukasawa (2005)])

$$X:wy^6-(x^6+y^6+z^6)z=0\subseteq \mathbb{P}^3$$
 $(p=3)$

 \sim A general fibre of the Gauss map is a conic!

Remark

This is the first known example of a proj var s.t. a gen fibre of the Gauss map is non-linear with dim > 0!

```
Theorem 14 ([Fukasawa (2006)])
```

```
For a given proj var Y in \mathbb{P}^n in characteristic p > 0,
```

 \exists a proj var X of dim n s.t.

a general fibre of the Gauss map $\sim _{
m PGL} Y.$

Recent results

joint work with S.Fukasawa (深澤 知) and K.Furukawa (古川勝久) FK:=Fukasawa-Kaji FFK:=Fukasawa-Furukawa-Kaji

Question

Which smooth proj var X has a $\begin{cases} birational \\ biregular \end{cases}$ embedding with

Birational embedding case

Theorem 15 ([FK])

 $\forall \text{ alg function field } K \text{ over } k \text{ in } p > 0 \\ \exists \text{ a proj model } X \subseteq \mathbb{P}^N \text{ of } K \text{ s.t.}$

 $\gamma \underset{\rm bir}{\sim}$ the Frobenius morphism.

More precisely,

Birational embedding case

Theorem 15 ([FK])

 $\forall \text{ alg function field } K \text{ over } k \text{ in } p > 0 \\ \exists \text{ a proj model } X \subseteq \mathbb{P}^N \text{ of } K \text{ s.t.}$

 $\gamma \underset{
m bir}{\sim}$ the Frobenius morphism.

More precisely,

```
X a proj var of dim n in p > 0.

1. For an integer r with 0 \le r \le n, TFAE:

(a) \exists a birational embedding X \dashrightarrow \mathbb{P}^N s.t.

\gamma gen finite & \operatorname{rk} \gamma = r;

(b) (p,r) \ne (2,1).

2.
```

Here $\operatorname{rk} \gamma := \operatorname{rk}(d_x \gamma : t_x X \to t_{\gamma(x)} \mathbb{G}(n, \mathbb{P}^N))$ at a general $x \in X$.

Birational embedding case

Theorem 15 ([FK])

 $\forall \text{ alg function field } K \text{ over } k \text{ in } p > 0 \\ \exists \text{ a proj model } X \subseteq \mathbb{P}^N \text{ of } K \text{ s.t.}$

 $\gamma \underset{\rm bir}{\sim}$ the Frobenius morphism.

More precisely,

```
X a proj var of dim n in p > 0.

1. For an integer r with 0 \le r \le n, TFAE:

(a) \exists a birational embedding X \dashrightarrow \mathbb{P}^N s.t.

\gamma gen finite & \operatorname{rk} \gamma = r;

(b) (p, r) \ne (2, 1).

2. Moreover for any r satisfying (b) above,

\exists a birational embedding X \dashrightarrow \mathbb{P}^N s.t.

K(X)/K(\gamma(X)) purely insep of degree p^{n-r}.

Here \operatorname{rk} \gamma := \operatorname{rk}(d_x \gamma : t_x X \to t_{\gamma(x)} \mathbb{G}(n, \mathbb{P}^N)) at a general x \in X.
```

Corollary ([FK])

∀ alg function field K over k in p > 0∃ a proj model $X \subseteq \mathbb{P}^N$ of K s.t. X is strange, i.e.,

 $\exists P \in \mathbb{P}^N, orall ext{ smooth } x \in X, P \in T_xX$

Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

 $(\mathsf{GMRZ}) \quad \exists \text{ an embedding } X \hookrightarrow \mathbb{P}^M \text{ s.t. } \mathbf{rk} \, \boldsymbol{\gamma} = \mathbf{0}.$

Remark

• A variety X satisfies (GMRZ) $\Rightarrow p > 0$. \because any rational map in p = 0 is separable $\sim \operatorname{rk} \gamma = \dim \gamma(X) > 0$. • A variety X satisfies (GMRZ) $\Leftrightarrow d\gamma \equiv 0$ $\Leftrightarrow K(\gamma(X)) \subseteq K(X)^p$ in K(X).

Example (GMRZ)

Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

 $(\mathsf{GMRZ}) \quad \exists \text{ an embedding } X \hookrightarrow \mathbb{P}^M \text{ s.t. } \mathbf{rk} \, \boldsymbol{\gamma} = \mathbf{0}.$

Remark

A variety X satisfies (GMRZ) ⇒ p > 0. ∵ any rational map in p = 0 is separable ~ rk γ = dim γ(X) > 0.
A variety X satisfies (GMRZ) ⇔ dγ ≡ 0 ⇔ K(γ(X)) ⊆ K(X)^p in K(X).

Example (GMRZ)

A Fermat hypersurf X of degree $\equiv 1 \mod p > 0$ in \mathbb{P}^N satisfies (GMRZ).

: The Gauss map γ_0 for the embedding $X \hookrightarrow \mathbb{P}^N$ factors thru the Frobenius morphism.

Moreover we have

Theorem 16 ([FFK])

- 1. A Segre var $\prod_{1 \le i \le r} \mathbb{P}^{n_i} \ (r \ge 2, n_i \ge 1)$ satisfies (GMRZ) $\Leftrightarrow p = 2 \& n_i = 1 \ (\forall i).$
- 2. A Grassman var $\mathbb{G}(l,m)$ $(1 \le l < m)$ satisfies (GMRZ) $\Leftrightarrow l = 1$ or l = m 1, i.e., a proj sp.
- 3. A smooth quadric hypersurf X in \mathbb{P}^N $(N \ge 3)$ satisfies (GMRZ) $\Leftrightarrow p = 2$ & N = 3.
- 4. A smooth cubic hypersurf X in \mathbb{P}^N $(N \ge 3)$ satisfies (GMRZ) $\Rightarrow p = 2$.

The results above follow from

Theorem 17 ([FFK])

X a proj var. $f: \mathbb{P}^1 \to X$ an unramified morphism. $N_f := \ker(f^*: f^*\Omega^1_X \to \Omega^1_{\mathbb{P}^1})^{\vee}$ the normal bundle of f. Assume:

- X smooth along $f(\mathbb{P}^1)$.
- $N_f^{ee} \simeq \bigoplus_{i \ge -1} \mathcal{O}_{\mathbb{P}^1}(i)^{r_i} \ (r_i \ge 0).$

Then:

1. X satisfies (GMRZ) \Rightarrow $r_{i-1} = 0$ or $r_i = 0$ $(\forall i \ge 0)$.

2. Moreover:

(a)
$$r_i > 0$$
 $(i \ge 0) \Rightarrow p = 2$ or $p|i+1$.

$$\textbf{(b)} \ r_{-1} > 0 \Rightarrow \ p | \deg f^* \iota^* \mathcal{O}_{\mathbb{P}^M}(1) - 1 \ \textbf{(} \forall X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^M \text{ s.t. } d\gamma \equiv 0\textbf{)}.$$

Proof

Theorem 17 ([FFK])

X a proj var. $f: \mathbb{P}^1 \to X$ an unramified morphism. $N_f := \ker(f^*: f^*\Omega^1_X \to \Omega^1_{\mathbb{P}^1})^{\vee}$ the normal bundle of f. Assume:

- X smooth along $f(\mathbb{P}^1)$.
- $N_f^{ee} \simeq \bigoplus_{i \ge -1} \mathcal{O}_{\mathbb{P}^1}(i)^{r_i} \ (r_i \ge 0).$

Then:

1. X satisfies (GMRZ) \Rightarrow $r_{i-1} = 0$ or $r_i = 0$ $(\forall i \ge 0)$.

2. Moreover:

(a)
$$r_i > 0$$
 $(i \ge 0) \Rightarrow p = 2$ or $p|i+1$.

(b)
$$r_{-1} > 0 \Rightarrow |p| \deg f^* \iota^* \mathcal{O}_{\mathbb{P}^M}(1) - 1 \quad (\forall X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^M \text{ s.t. } \operatorname{rk} \gamma = 0).$$

Proof (Sketch) Assume: $\operatorname{rk} \gamma = 0$ for $\iota : X \hookrightarrow \mathbb{P}^M$, and set $\mathcal{L} := \iota^* \mathcal{O}_{\mathbb{P}^M}(1)$. $\Rightarrow \gamma \circ f : \mathbb{P}^1 \to \mathbb{G}(n, \mathbb{P}^M)$ has rank zero. \Rightarrow the splitting type of $f^* \mathcal{P}^1_X(\mathcal{L}) \equiv \overrightarrow{0} \mod p$. \sim information on p and N_f . $\therefore 0 \to N_f^{\vee} \otimes f^* \mathcal{L} \to f^* \mathcal{P}^1_X(\mathcal{L}) \to \mathcal{P}^1_{\mathbb{P}^1}(f^* \mathcal{L}) \to 0$ splits, & the splitting type of $\mathcal{P}^1_{\mathbb{P}^1}(f^* \mathcal{L}) = \dots$ **Cubic hypersurfaces**

Theorem 18 ([FFK])

A smooth cubic X in \mathbb{P}^N ($N \ge 5$) satisfies (GMRZ) $\Leftrightarrow X \underset{\mathsf{PGL}}{\sim}$ a Fermat hypersurface in p = 2.

Cubic hypersurfaces

Theorem 18 ([FFK])

A smooth cubic X in \mathbb{P}^N ($N \ge 5$) satisfies (GMRZ) $\Leftrightarrow X \underset{\mathsf{PGL}}{\sim}$ a Fermat hypersurface in p = 2.

Theorem 19 ([FFK])

A smooth cubic X in \mathbb{P}^N ($N \ge 3$) in p = 2 satisfies $\operatorname{rk} \gamma_0 = 0$ $\Leftrightarrow X \underset{\mathsf{PGL}}{\sim}$ a Fermat hypersurface.

Remark

The hard part in our proof of Theorem 17 is to show:

 $(\mathsf{GMRZ}) \Rightarrow \operatorname{rk} \gamma_0 = 0$

for a smooth cubic $X \subseteq \mathbb{P}^N$, where we need $N \ge 5$. The cases N = 3, 4 are open. **General hypersurfaces**

Theorem 20 ([FFK])

A general hypersurf X of degree d in \mathbb{P}^N with $3 \le d \le 2N - 3$ satisfies (GMRZ) $\Rightarrow p = 2 \& d = 2N - 3.$

Remark

 $2N - 3 - d = \chi(N_{L/X})$ is the "expected dim" of {lines $L \subseteq X$ }.

Proof

General hypersurfaces

Theorem 20 ([FFK])

A general hypersurf X of degree d in \mathbb{P}^N with $3 \le d \le 2N - 3$ satisfies (GMRZ) $\Rightarrow p = 2 \& d = 2N - 3.$

Remark

 $2N - 3 - d = \chi(N_{L/X})$ is the "expected dim" of {lines $L \subseteq X$ }.

Proof

- The splitting type of N_f for lines $f(\mathbb{P}^1)$ on X $\rightsquigarrow p=2$ & either d=2N-3 or d=N-1.
- To rule out the the latter case, assume d = N 1 and consider conics $f(\mathbb{P}^1)$ on X instead of lines.
- ullet The point is to show: for a general conic $f(\mathbb{P}^1)\subseteq X$,

 $N_f \simeq \mathcal{O}_{\mathbb{P}^1}(1)^2 \oplus \mathcal{O}_{\mathbb{P}^1}^{N-4}.$

 $\rightsquigarrow N = 4.$

 \sim contradiction.

5 Geometry of rational curves on algebraic varieties

Definition

• A rational curve (or a morphism) $f : \mathbb{P}^1 \to X$ is free $\Leftrightarrow_{\mathsf{def}} f^*T_X$ is generated by its global sections.

• A free *f* is minimal (or standard)

$$\Leftrightarrow_{\mathsf{def}} f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \underbrace{\mathcal{O}_{\mathbb{P}^1}(1)^{a-2} \oplus \mathcal{O}_{\mathbb{P}^1}^{n-a+1}}_{N_f}$$

where

 $a=\deg(-f^*K_X)$ & $n=\dim X.$

Remark

A family of mini free rat curves (characterization of proj space & quadric hypersurface, (Mori, Cho, Sato, Miyaoka, Araujo, Shepherd-Barron, Andreatta, Wiśniewski, Druel, Kovács, ...) Fano var, (Andreatta, Chierici, Occhetta, Araujo, ...) VMRT (=var of minimal rational tangents), (Hwang, Kebekus, Mok, Conde, ...) One of the most fundamental results in p = 0 to guarantee the existence of minimal free rational curves would be as follows:

Fact ([Kollár, "Ratoinal Curves on Algebraic Varieties," (IV.2.10)]) For a smooth proj var X in p = 0,

 \exists a free rat curve on $X \Rightarrow \exists$ a minimal free rat curve on X.

This is no longer true in positive char!

One of the most fundamental results in p = 0 to guarantee the existence of minimal free rational curves would be as follows:

Fact ([Kollár, "Ratoinal Curves on Algebraic Varieties," (IV.2.10)]) For a smooth proj var X in p = 0,

 \exists a free rat curve on $X \Rightarrow \exists$ a minimal free rat curve on X.

This is no longer true in positive char!

Theorem 21 ([FFK])

X a Fermat hypersurface of degree $d \equiv 1 \mod p > 0$ in \mathbb{P}^N . Then:

> $N \ge 2d - 1 \Rightarrow X$ has a free rational curve but no minimal free rational curve.

This basically follows from

Theorem 22 ([FFK])

X a proj var of dim n.

 $f: \mathbb{P}^1 o X$ a minimal free rational curve s.t.

X smooth along $f(\mathbb{P}^1).$

Assume:

X satisfies (GMRZ) with $\iota: X \hookrightarrow \mathbb{P}^M$. Then, one of the following holds:

1.
$$\frac{\deg(-f^*K_X) = n+1}{d > p \& p|d-1};$$

2.
$$\displaystyle rac{\deg(-f^*K_X)=p=2}{\log(-f^*K_X)}$$
 & $2|d$,

where $d:=\deg f^*\iota^*\mathcal{O}_{\mathbb{P}^M}(1).$

Both cases actually occur!

Example 1

1. A proj space Pⁿ in p > 0 satisfies (GMRZ), and a line L ⊆ Pⁿ is minimal free with deg(-K_{Pn}|_L) = n + 1.
2. A Segre var (P¹)ⁿ in p = 2 satisfies (GMRZ), and a fibre L := P¹ × {a point} ⊆ (P¹)ⁿ is minimal free with deg(-K_{(P¹)n}|_L) = 2 = p.

Example 1

1. A proj space
$$\mathbb{P}^n$$
 in $p > 0$ satisfies (GMRZ), and
a line $L \subseteq \mathbb{P}^n$ is minimal free with
 $deg(-K_{\mathbb{P}^n}|_L) = n + 1$.
2. A Segre var $(\mathbb{P}^1)^n$ in $p = 2$ satisfies (GMRZ), and
a fibre $L := \mathbb{P}^1 \times \{a \text{ point}\} \subseteq (\mathbb{P}^1)^n$ is minimal free with
 $deg(-K_{(\mathbb{P}^1)^n}|_L) = 2 = p$.

Example 2

A Fermat cubic surface $X \subseteq \mathbb{P}^3$ in p = 2 satisfies (GMRZ).

1. A twisted cubic curve $C_3 \subseteq X$ is minimal free with $deg(-K_X|_{C_3}) = 3 = 2 + 1.$ 2. A conic $C_2 \subseteq X$ is minimal free with $deg(-K_X|_{C_2}) = 2 = p.$

6 Final comments

Question For a proj var
$$X$$
 in \mathbb{P}^N in $p>0$,

? ⇒

 \Leftarrow

The Gauss map γ is separable.

a general fiber of γ is linear, e.g., γ is birational for smooth X.

6 Final comments

PuestionFor a proj var X in
$$\mathbb{P}^N$$
 in $p > 0$,The Gauss map γ is separable.?
 $\Rightarrow \\ \Leftarrow$ a general fiber of γ is linear, e.g.,
 γ is birational for smooth X.[FK (2007)] \searrow if $n \le 2$.[KP (1991)] \nearrow \bowtie if $n \ge 3$.[K (2003)]
[F (2006)]

X is reflexive.

Definition

 $n := \dim X$

X is reflexive

$$\displaystyle \mathop{\Leftrightarrow}_{\operatorname{def}} C(X) = C(X^*) ext{ via a natural isom } \mathbb{P}^N imes \check{\mathbb{P}}^N \simeq \check{\mathbb{P}}^N imes \check{\mathbb{P}}^N, \ (x,H) \leftrightarrow (H,x^{**})$$

where

 $egin{aligned} C(X) &:= \{(x,H) | T_x X \subseteq H, x \in X ext{ a smooth pt} \}^- \subseteq \mathbb{P}^N imes \check{\mathbb{P}}^N \ & ext{ the conormal var of } X, \ X^* &:= \mathrm{Im}(C(X) \xrightarrow[2 nd proj]{}\check{\mathbb{P}}^N) ext{ the dual var of } X. \end{aligned}$

Thank you for your attention!