Gauss maps in positive characteristic

KAJI，Hajime（Waseda University）
楫 元（早稲田大学）

2010 Algebra and Geometry of Subvarieties of Projective Space in honor of Professor Fyodor L．Zak on his 60th birthday

KAIST，Daejeon，KOREA
January 28， 2010

0 Introduction

This is a story of projective algebraic geometry in positive characteristic. I survey a history of studies on Gauss maps of projective varieties in positive characteristic, and state some recent results.

0 Introduction

This is a story of projective algebraic geometry in positive characteristic. I survey a history of studies on Gauss maps of projective varieties in positive characteristic, and state some recent results.

The theme of those studies is originally condensed into the following:

Problem ([Kleiman (1987)])

"It would be good to have an example of a smooth curve X such that every tangent makes 2 or more contacts or to prove that such X do not exist."
S.Kleiman (with A.Thorup), "Intersection theory and enumerative geometry: A decade in review," in "Algbraic Geometry - Bowdoin 1985," S.J.Bloch (ed.) Proc. Symposia Pure Math. 46-Part 2 (1987), pp. 321-370.

TOC

1. Examples and the definition of a Gauss map
2. Gauss maps of projective curves
3. Gauss maps of projective varieties
4. Recent results
5. Geometry of rational curves on algebraic varieties
6. Final comments
$/ k$ an algebraically closed field of characteristic $p \geq 0$

1 Examples and the definition of a Gauss map

Example 1 ([Wallace (1956)])

$$
\begin{gathered}
X: x^{p+1}+y^{p+1}+z^{p+1}=0 \subseteq \mathbb{P}^{2} \quad(p>0) \\
\cdot T_{P} X=\left\{a^{p} x+b^{p} y+c^{p} z=0\right\} \text { for } P=(a: b: c) \in X .
\end{gathered}
$$

- the contact multiplicity: $\boldsymbol{i}\left(\boldsymbol{X}, \boldsymbol{T}_{P} \boldsymbol{X} ; \boldsymbol{P}\right)=p$ for a general $\boldsymbol{P} \in \boldsymbol{X}$. In fact, $X \cap T_{P} X=p P+Q$ with $Q:=\left(a^{p^{2}}: b^{p^{2}}: c^{p^{2}}\right)$.

1 Examples and the definition of a Gauss map
Example 1 ([Wallace (1956)])

$$
X: x^{p+1}+y^{p+1}+z^{p+1}=0 \subseteq \mathbb{P}^{2} \quad(p>0)
$$

- $T_{P} X=\left\{a^{p} x+b^{p} y+c^{p} z=0\right\}$ for $P=(a: b: c) \in X$.
- the contact multiplicity: $\boldsymbol{i}\left(\boldsymbol{X}, \boldsymbol{T}_{P} \boldsymbol{X} ; \boldsymbol{P}\right)=p$ for a general $P \in X$.

In fact, $X \cap T_{P} X=p P+Q$ with $Q:=\left(a^{p^{2}}: b^{p^{2}}: c^{p^{2}}\right)$.

- the dual map is given by

$$
\gamma: X \rightarrow \check{\mathbb{P}}^{2} ; P=(a: b: c) \mapsto\left[T_{P} X\right]=\left(a^{p}: b^{p}: c^{p}\right),
$$

where $\mathbb{P}^{2} \supseteq\{\xi x+\eta y+\zeta z=0\} \leftrightarrow(\xi: \eta: \zeta) \in \check{\mathbb{P}}^{2}$.

- the dual curve $\boldsymbol{X}^{*}:=\gamma(\boldsymbol{X})=\left\{\left[\boldsymbol{T}_{\boldsymbol{P}} \boldsymbol{X}\right] \in \check{\mathbb{P}}^{2} \mid \boldsymbol{P} \in \boldsymbol{X}\right\}$.

$$
\leadsto X^{*}=\left\{\xi^{p+1}+\eta^{p+1}+\zeta^{p+1}=0\right\} \simeq X .
$$

Why?

1 Examples and the definition of a Gauss map
Example 1 ([Wallace (1956)])

$$
X: x^{p+1}+y^{p+1}+z^{p+1}=0 \subseteq \mathbb{P}^{2} \quad(p>0)
$$

- $T_{P} X=\left\{a^{p} x+b^{p} y+c^{p} z=0\right\}$ for $P=(a: b: c) \in X$.
- the contact multiplicity: $\boldsymbol{i}\left(\boldsymbol{X}, \boldsymbol{T}_{P} \boldsymbol{X} ; \boldsymbol{P}\right)=p$ for a general $P \in X$.

In fact, $X \cap T_{P} X=p P+Q$ with $Q:=\left(a^{p^{2}}: b^{p^{2}}: c^{p^{2}}\right)$.

- the dual map is given by

$$
\gamma: X \rightarrow \check{\mathbb{P}}^{2} ; P=(a: b: c) \mapsto\left[T_{P} X\right]=\left(a^{p}: b^{p}: c^{p}\right),
$$

where $\mathbb{P}^{2} \supseteq\{\xi x+\eta y+\zeta z=0\} \leftrightarrow(\xi: \eta: \zeta) \in \check{\mathbb{P}}^{2}$.

- the dual curve $\boldsymbol{X}^{*}:=\gamma(\boldsymbol{X})=\left\{\left[\boldsymbol{T}_{\boldsymbol{P}} \boldsymbol{X}\right] \in \check{\mathbb{P}}^{2} \mid \boldsymbol{P} \in \boldsymbol{X}\right\}$.
$\sim X^{*}=\left\{\xi^{p+1}+\eta^{p+1}+\zeta^{p+1}=0\right\} \simeq X$.
$\because\left(a^{p}\right)^{p+1}+\left(b^{p}\right)^{p+1}+\left(c^{p}\right)^{p+1}$
$=\left(a^{p+1}\right)^{p}+\left(b^{p+1}\right)^{p}+\left(c^{p+1}\right)^{p}$

$$
=\left(a^{p+1}+b^{p+1}+c^{p+1}\right)^{p}=0(\because(a: b: c) \in X)
$$

$\leadsto \gamma=$ the Frobenius morphism of $X\left(=X^{* *}\right.$ via $\left.\mathbb{P}^{2}=\check{\mathscr{P}^{2}}\right)$.

- $K(X) / K\left(X^{*}\right)$ purely inseparable of degree p.

Example 2 (strange curve)

$$
X: y=x^{p} \subseteq \mathbb{A}^{2} \quad(p>0)
$$

- $T_{P} X=\left\{y-a^{p}=0\right\}$ for $P=\left(a, a^{p}\right) \in X\left(\because \frac{d y}{d x}=p x^{p-1}=0\right)$
\sim all tangent lines are parallel to x-axis, i.e., all proj tangent lines \ni a common pt $(1: 0: 0) \in \mathbb{P}^{2}$, where $\left.\mathbb{A}^{2}=\{(x: y: 1))\right\} \subseteq \mathbb{P}^{2}$.
$\leadsto X$ a "strange" curve.

Example 2 (strange curve)

$$
X: y=x^{p} \subseteq \mathbb{A}^{2} \quad(p>0)
$$

- $T_{P} X=\left\{y-a^{p}=0\right\}$ for $P=\left(a, a^{p}\right) \in X\left(\because \frac{d y}{d x}=p x^{p-1}=0\right)$
\sim all tangent lines are parallel to x-axis, i.e., all proj tangent lines \ni a common pt $(1: 0: 0) \in \mathbb{P}^{2}$, where $\left.\mathbb{A}^{2}=\{(x: y: 1))\right\} \subseteq \mathbb{P}^{2}$.
$\leadsto X$ a "strange" curve.
- the dual map is given by

$$
\gamma: X \rightarrow X^{*} ; P=\left(a, a^{p}\right) \mapsto\left[T_{P} X\right]=\left(0: 1:-a^{p}\right)
$$

$\leadsto X^{*}=\{\xi=0\}$ a line in $\check{\mathbb{P}}^{2}$.
$\leadsto X^{* *}=\{(1: 0: 0)\} \neq X$ via $\check{\mathbb{P}}^{2}=\mathbb{P}^{2}$.

- $K(X) / K\left(X^{*}\right)$ purely inseparable of degree p.
-

Example 2 (strange curve)

$$
X: y=x^{p} \subseteq \mathbb{A}^{2} \quad(p>0)
$$

- $T_{P} X=\left\{y-a^{p}=0\right\}$ for $P=\left(a, a^{p}\right) \in X\left(\because \frac{d y}{d x}=p x^{p-1}=0\right)$
\sim all tangent lines are parallel to x-axis, i.e., all proj tangent lines \ni a common pt $(1: 0: 0) \in \mathbb{P}^{2}$, where $\left.\mathbb{A}^{2}=\{(x: y: 1))\right\} \subseteq \mathbb{P}^{2}$.
$\leadsto X$ a "strange" curve.
- the dual map is given by

$$
\gamma: X \rightarrow X^{*} ; P=\left(a, a^{p}\right) \mapsto\left[T_{P} X\right]=\left(0: 1:-a^{p}\right)
$$

$\leadsto X^{*}=\{\xi=0\}$ a line in $\check{\mathbb{P}}^{2}$.
$\leadsto X^{* *}=\{(1: 0: 0)\} \neq X$ via $\check{\mathbb{P}}^{2}=\mathbb{P}^{2}$.

- $K(X) / K\left(X^{*}\right)$ purely inseparable of degree p.
- Note that X smooth $\Leftrightarrow p=2$.

Fact ([Lluis (1962)], [Samuel (1966)])
The only non-linear smooth strange curve X in \mathbb{P}^{N} is a conic in $p=2$.

Definition (Gauss map)

For a non-linear algebraic variety X of $\operatorname{dim} n$ in \mathbb{P}^{N}, $\gamma: X \rightarrow \mathbb{G}(n, N) ; x \mapsto T_{x} X$,
where
$T_{x} X \subseteq \mathbb{P}^{N}$ the proj tangent space to X at a smooth pt \boldsymbol{x}.

Remark

$$
N=2, n=1 \Rightarrow \gamma=\text { the dual map } X \rightarrow X^{*}
$$

Remark For a generically finite γ, $\#$ of $\binom{$ contacts of a general }{ proj tangent space } as a set $=\frac{[\boldsymbol{K}(\boldsymbol{X}): \boldsymbol{K}(\gamma(\boldsymbol{X}))]_{s}}{\text { separable degree of } \gamma}$

Problem ([Kleiman (1987)]) rephrased as:
\exists ? a smooth proj curve X s.t. γ has separable degree >1 or prove that such an X does not exist.

2 Gauss maps of projective curves

Remark For a proj curve \boldsymbol{X},

$p=0 \Rightarrow \gamma$ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and seem to be caused by the inseparability of Gauss maps γ.

Fact

2 Gauss maps of projective curves

Remark For a proj curve \boldsymbol{X},

$p=0 \Rightarrow \gamma$ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and seem to be caused by the inseparability of Gauss maps γ.

Fact ([K (1989)]) For a proj curve X,

$\bullet \gamma$ is separable $\Rightarrow \gamma$ is birational (classically known for $X \subseteq \mathbb{P}^{2}$).
$\bullet p \neq 2 \Leftrightarrow \exists$ a proj embedding of \boldsymbol{X} s.t. γ is birational.
biregular embedding into some proj space

Birational embeddings of smooth proj curves (possibly singular case)
Theorem 1 ([Wallace (1956)], [Kleiman (1986)])
\forall curve $X^{\prime} \subseteq \check{\mathbb{P}}^{2}$ in $p>0, \forall s \geq 1, \forall r \geq 1$,
\exists a curve $\boldsymbol{X} \subseteq \mathbb{P}^{2}$ s.t.

$$
\gamma(\boldsymbol{X})=\boldsymbol{X}^{\prime} \quad \& \quad\left\{\begin{array}{l}
{\left[\boldsymbol{K}(\boldsymbol{X}): \boldsymbol{K}\left(\boldsymbol{X}^{\prime}\right)\right]_{s}=s} \\
{\left[\boldsymbol{K}(\boldsymbol{X}): \boldsymbol{K}\left(\boldsymbol{X}^{\prime}\right)\right]_{i}=\boldsymbol{p}^{r}}
\end{array}\right.
$$

Theorem 2 ([K (1989)])
\forall inseparable ext K / K^{\prime} of function fields of $\operatorname{dim} 1$,
\exists a proj model $X \subseteq \mathbb{P}^{N}$ of K s.t.

$$
\boldsymbol{K} / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}(\gamma(\boldsymbol{X}))
$$

Remark

Those curves X in Theorems above are singular in most cases. So, it would be natural to assume the smoothness in the problem.

Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

\forall inseparable finite extension $K\left(\mathbb{P}^{1}\right) / K^{\prime}$ of function fields,
\exists a smooth rational curve $X \subseteq \mathbb{P}^{N}$ s.t.

$$
\boldsymbol{K}\left(\mathbb{P}^{1}\right) / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}(\gamma(\boldsymbol{X}))
$$

Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

\forall inseparable finite extension $K\left(\mathbb{P}^{1}\right) / K^{\prime}$ of function fields,
\exists a smooth rational curve $X \subseteq \mathbb{P}^{N}$ s.t.

$$
\boldsymbol{K}\left(\mathbb{P}^{1}\right) / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}(\gamma(\boldsymbol{X}))
$$

Proof

- Take $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ a finite morphism.
$\leftrightarrow K\left(\mathbb{P}^{1}\right) / K^{\prime}$ a given insep finite extension $\left(\sim K^{\prime} \simeq K\left(\mathbb{P}^{1}\right)\right)$
\bullet embed its graph $\Gamma_{f}:=\left\{(x, f(x)) \mid x \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ into \mathbb{P}^{3} so that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a quadric surface.
- $X:=$ the image of Γ_{f} in \mathbb{P}^{3}.
$\leadsto f$ is recovered as the Gauss map γ of X.
\because every fibre $\mathbb{P}^{1} \times\{y\}$ is a line in \mathbb{P}^{3}, tangent to X because of the inseparability of $f . \square$

Biregular embeddings of smooth proj curves (smooth case)
Question For a smooth proj curve X, which subfield K^{\prime} of the function field $K(X)$ shows up as $K(\gamma(\boldsymbol{X}))$, the function field of the image of the Gauss map ι for a biregular embedding of X into some \mathbb{P}^{M} ?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

$$
\mathcal{K}^{\prime}:=\left\{K(\gamma(X)) \subseteq K(X) \left\lvert\, \gamma \begin{array}{l}
\text { the Gauss map of } \\
\text { a biregular embedding of } \boldsymbol{X}
\end{array}\right.\right\}
$$

Remark

Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X, which subfield K^{\prime} of the function field $K(X)$ shows up as $K(\gamma(\boldsymbol{X}))$, the function field of the image of the Gauss map ι for a biregular embedding of X into some \mathbb{P}^{M} ?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

$$
\mathcal{K}^{\prime}:=\left\{\boldsymbol{K}(\gamma(\boldsymbol{X})) \subseteq \boldsymbol{K}(\boldsymbol{X}) \left\lvert\, \gamma \begin{array}{l}
\text { the Gauss map of } \\
\text { a biregular embedding of } \boldsymbol{X}
\end{array}\right.\right\}
$$

Remark With this notation, the known results are described as follows:

- $\boldsymbol{p}=0 \Rightarrow \mathcal{K}^{\prime}=\{\boldsymbol{K}(\boldsymbol{X})\}$ for any \boldsymbol{X}.
- $K^{\prime} \in \mathcal{K}^{\prime} \& K(X) / K^{\prime}$ separable $\Rightarrow K^{\prime}=K(X)$.
- $p \neq 2 \Leftrightarrow K(X) \in \mathcal{K}^{\prime}$ for any X.
- For $X=\mathbb{P}^{1}, \mathcal{K}^{\prime} \backslash\left\{K\left(\mathbb{P}^{1}\right)\right\}=\left\{K^{\prime} \subseteq K\left(\mathbb{P}^{1}\right) \mid K\left(\mathbb{P}^{1}\right) / K^{\prime}\right.$ finite insep ext $\}$.

Elliptic curves

Theorem 4 ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

$$
\left.\begin{array}{rl}
\mathcal{K}^{\prime} \backslash\{K(X)\} & =\left\{K\left(X^{\prime}\right) \subseteq K(X) \left\lvert\, \begin{array}{l|l}
X \rightarrow X^{\prime} \text { insep isogeny, and } \\
\hat{X} \leftarrow \hat{X}^{\prime} \text { separable cyclic }
\end{array}\right.\right.
\end{array}\right\}
$$

where

$$
\hat{X}:=\operatorname{Pic}^{0} X \text { the dual of } X, \text { and }
$$

K_{s}^{\prime} the separable closure of K^{\prime} in $K(X)$.

$$
\begin{aligned}
& \text { Recall that for an elliptic curve } X \text { in char } p>0, \\
& \qquad X \text { is said to be } \begin{cases}\text { ordinary } & \text { if } r=1, \\
\text { supersingular } & \text { if } r=0,\end{cases} \\
& \text { where } r \text { is the } p \text {-rank of } X \text { defined by } \\
& \# \operatorname{ker}\left(p_{X}: X \rightarrow X ; \boldsymbol{x} \mapsto p \cdot \boldsymbol{x}\right)=p^{r} . \quad(\sim r=0,1)
\end{aligned}
$$

Elliptic curves
Theorem 4 ([K (1989)], [K (1991)])
If X is an ordinary elliptic curve, then

$$
\left.\begin{array}{rl}
\mathcal{K}^{\prime} \backslash\{K(X)\} & =\left\{K\left(X^{\prime}\right) \subseteq K(X) \left\lvert\, \begin{array}{l|l}
X & X \\
\hat{X} & X^{\prime} \text { insep isogeny, and } \\
\hat{X}^{\prime} \text { separable cyclic }
\end{array}\right.\right.
\end{array}\right\}
$$

where

$$
\hat{X}:=\operatorname{Pic}^{0} X \text { the dual of } X, \text { and }
$$

$$
K_{s}^{\prime} \text { the separable closure of } K^{\prime} \text { in } K(X)
$$

Theorem 5 ([K (1989)])
If X is a supersingular elliptic curve, then

$$
\mathcal{K}^{\prime}= \begin{cases}\left\{K(X)^{2}, K(X)^{2^{2}}\right\}, & \text { if } p=2 \\ \left\{K(X), K(X)^{p}\right\}, & \text { if } p>2\end{cases}
$$

Key observation
Theorem 6 ([K (1989)]) X a smooth proj curve.
For an inseparable finite extension $K(X) / K^{\prime}$, TFAE:

1. $K^{\prime} \in \mathcal{K}^{\prime}$;
2. \exists a vector bundle \mathcal{E} of rank 2 on X^{\prime} and \exists an embedding $\varphi: X \hookrightarrow \mathbb{P}(\mathcal{E})$ s.t.

$$
\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\varphi(\boldsymbol{X})) / \boldsymbol{K}\left(\boldsymbol{X}^{\prime}\right)
$$

where X^{\prime} a smooth proj model of K^{\prime}.

Key observation

Theorem 6 ([K (1989)]) X a smooth proj curve.
For an inseparable finite extension $K(X) / K^{\prime}$, TFAE:

1. $K^{\prime} \in \mathcal{K}^{\prime}$;
2. \exists a vector bundle \mathcal{E} of rank 2 on X^{\prime} and \exists an embedding $\varphi: X \hookrightarrow \mathbb{P}(\mathcal{E})$ s.t.

$$
\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\varphi(\boldsymbol{X})) / \boldsymbol{K}\left(\boldsymbol{X}^{\prime}\right)
$$ where X^{\prime} a smooth proj model of K^{\prime}.

Remark The idea of the proof of $(1) \Leftarrow(2)$:
\bullet embed $\mathbb{P}(\mathcal{E})$ into some \mathbb{P}^{M} as a scroll, and

- consider $\iota: X \stackrel{\varphi}{\hookrightarrow} \mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^{M}$, the composite morphism.
\leadsto the image of any fibre of $\mathbb{P}(\mathcal{E}) \rightarrow X^{\prime}$ is
a line tangents to $\iota(X)$ in \mathbb{P}^{M}, and the Gauss map of $\iota(X) \underset{\text { bir }}{\sim} X \rightarrow X^{\prime}$ defined via φ.

Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus $g \geq 2$.
$F: X \rightarrow X^{\prime}$ the Frobenius morphism.
Then TFAE:

1. $K(X)^{p} \in \mathcal{K}^{\prime}$ (i.e., $\exists \iota: X \hookrightarrow \mathbb{P}^{M}$ with $\gamma \underset{\text { bir }}{\sim}$ the Frob morph);
2. \exists a stable vector bundle \mathcal{E} on X^{\prime}, and $\exists \mathcal{L} \in \operatorname{Pic} X$ s.t.
where

$$
F^{*} \mathcal{E} \simeq \mathcal{P}_{X}^{1}(\mathcal{L})
$$

$\mathcal{P}_{X}^{1}(\mathcal{L})$ the bundle of principal parts of first order of \mathcal{L}.

Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus $g \geq 2$.
$F: X \rightarrow X^{\prime}$ the Frobenius morphism.
Then TFAE:

1. $K(X)^{p} \in \mathcal{K}^{\prime}$ (i.e., $\exists \iota: X \hookrightarrow \mathbb{P}^{M}$ with $\gamma \underset{\text { bir }}{\sim}$ the Frob morph);
2. \exists a stable vector bundle \mathcal{E} on X^{\prime}, and $\exists \mathcal{L} \in \operatorname{Pic} X$ s.t.
where

$$
F^{*} \mathcal{E} \simeq \mathcal{P}_{X}^{1}(\mathcal{L})
$$

$\mathcal{P}_{X}^{1}(\mathcal{L})$ the bundle of principal parts of first order of \mathcal{L}.
Remark The idea of the proof of $(1) \Leftarrow(2)$:
Apply the Key Observation (Theorem 6) with the stable \mathcal{E} above and

$$
\varphi: X \simeq \mathbb{P}(\mathcal{L}) \hookrightarrow \mathbb{P}\left(\mathcal{P}_{X}^{1}(\mathcal{L})\right) \simeq \mathbb{P}\left(\boldsymbol{F}^{*} \mathcal{E}\right) \rightarrow \mathbb{P}(\mathcal{E})
$$

which turns out to be an embedding.
\exists a natural exact sequence,

$$
0 \rightarrow \Omega_{X}^{1} \otimes \mathcal{L} \rightarrow \mathcal{P}^{1}(\mathcal{L}) \rightarrow \mathcal{L} \rightarrow 0
$$

Definition (Tango-Raynaud curve)
\boldsymbol{X} is a Tango-Raynaud curve

$$
\begin{array}{r}
\stackrel{\operatorname{def}}{\Leftrightarrow} \exists \mathcal{N}
\end{array} \quad \in \operatorname{Pic} X^{\prime} \text { s.t. } .
$$

- $F^{*}: \bar{H}^{1}\left(X^{\prime}, \mathcal{N}^{\vee}\right) \rightarrow H^{1}\left(X, F^{*} \mathcal{N}^{\vee}\right)$ not injective where $F: X \rightarrow X^{\prime}$ the Frobenius morphism.

Remark
 A Tango-Raynaud curve \leadsto \exists alg surfaces for which the Kodaira vanishing theorem does not hold.

Example

Definition (Tango-Raynaud curve)

\boldsymbol{X} is a Tango-Raynaud curve

$$
\underset{\text { def }}{\Leftrightarrow} \exists \mathcal{N} \in \operatorname{Pic} X^{\prime} \text { s.t. }
$$

- $F^{*} \mathcal{N} \simeq \Omega_{X}^{1}$
- $F^{*}: \bar{H}^{1}\left(X^{\prime}, \mathcal{N}^{\vee}\right) \rightarrow H^{1}\left(X, F^{*} \mathcal{N}^{\vee}\right)$ not injective where $F: X \rightarrow X^{\prime}$ the Frobenius morphism.

Remark

A Tango-Raynaud curve \leadsto
\exists alg surfaces for which the
Kodaira vanishing theorem does
not hold.

Example (Theorem 7) For a Tango-Raynaud curve X of $g \geq 2$,

$$
\begin{aligned}
& \left(0 \rightarrow \mathcal{O}_{X^{\prime}} \rightarrow \underset{\uparrow}{\mathcal{E} \rightarrow \mathcal{N} \rightarrow 0) \leftrightarrow 0 \neq \xi \in \operatorname{ker} F^{*} \subseteq \operatorname{Ext}_{X^{\prime}}^{1}\left(\mathcal{N}, \mathcal{O}_{X^{\prime}}\right)}\right. \\
& \quad \text { satisfies (2) in Theorem } 7 . \\
& \text { In fact, } \\
& \quad \mathcal{E} \text { stable, and } \\
& F^{*} \mathcal{E} \simeq \mathcal{O}_{X} \oplus \Omega_{X}^{1}=\mathcal{P}_{X}^{1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

Generic injectivity of Gauss map

Theorem 8 ([K (1989)])

X a proj curve of genus g in \mathbb{P}^{N}.
g^{\prime} the genus of the normalization of $\gamma(\boldsymbol{X})$.
Then:

$$
X \text { smooth or nodal } \Rightarrow g=g^{\prime}
$$

In particular:

$$
g \geq 2 \Rightarrow \gamma \text { birational or purely inseparable, i.e., }
$$

Theorem 9 ([K (1991)], [Kleiman-Piene (1991)])

X a proj curve of genus g in \mathbb{P}^{N}
$\nu:=\operatorname{deg} \Omega_{\widetilde{X} / \mathbb{P}^{N}}^{1}$ the \# of cusps of $X(\widetilde{X}$ the normalization of $X)$
Then:

$$
\nu<2 g-2 \Rightarrow \gamma \text { generically injective. }
$$

Theorem 10 ([Kleiman-Piene (1991)]) With the same notation as above, s the separable degree of γ.
Then:

$$
2 s\left(g-g^{\prime}\right) \leq(s-1) \nu
$$

In particular, $\nu=0 \Rightarrow g=g^{\prime}$.

Brief Summary (proj curves):

- possibly singular case:
\forall insep finite ext K / K^{\prime} of function fields of $\operatorname{dim} 1$, \exists a proj model X of K s.t.

$$
\boldsymbol{K} / \boldsymbol{K}^{\prime}=\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}(\gamma(\boldsymbol{X}))
$$

possible to take X to be smooth for rational K.

- smooth case:
\(\left.\begin{array}{rl}rational curves

ordinary elliptic curves\end{array}\right\} \Rightarrow\)| \exists a biregular embedding s.t. |
| :--- |
| the Gauss map has |
| separable degree >1, i.e., |
| not generically injective. |

$$
g(X)=g(\widetilde{\gamma(X)})
$$

$\left.\begin{array}{r}\text { supersingular elliptic curves } \\ \text { higher genus curves }\end{array}\right\}$
the Gauss map of
$\Rightarrow \quad$ any biregular embedding is generically injective.

3 Gauss maps of projective varieties

The Gauss map of a proj var X of $\operatorname{dim} n$ in \mathbb{P}^{N} is

$$
\gamma: X>\mathbb{G}(n, N) ; x \mapsto T_{x} X
$$

Fact

- [Griffiths-Harris (1979)]: $p=0 \Rightarrow$ a gen fibre of γ is linear.
- [Zak (1993?)]: X smooth $\Rightarrow \gamma$ is finite in arbitrary char. Hence, \boldsymbol{X} smooth in $p=0 \Rightarrow \gamma$ is birational finite.

Generic injectivity of Gauss map

Theorem 11 ([Kleiman-Piene (1991)])

X a smooth complete intersection of $\operatorname{dim} n$ and degree ≥ 2.
Assume:
$\gamma(X)$ smooth.
Then:

$$
c_{n}(X)=c_{n}(\gamma(X))
$$

Theorem 12 The generic injectivity of the Gauss map holds for

1. [Kleiman-Piene (1991)]: a smooth complete int of dim 2.
2. [K-Noma (1997)]: a smooth proj var with generically ample cotangent bundle.
3. [Noma (1997)]: a smooth weighted complete int of general type with $\operatorname{dim} \geq 3$.
4. [Noma (1997)]: a smooth proj var of $\operatorname{dim} 2$ or 3 with μ-semistable tangent bundle.

Gauss map with non-trivial separable degree

Theorem 13 ([Noma (2001)])

1. \exists examples of proj var with an embedding s.t. the Gauss map of separable degree >1 as follows:
(a) a smooth var of non-general type (i.e., Kodaira $\operatorname{dim} \kappa<n$).
(b) a normal var of general type with only isolated sing.
2. \exists an embedding of a proj space \mathbb{P}^{n} into some proj space s.t.
the Gauss map has separable degree >1 and its image $=$ a normal var of general type.

A new direction: a general fibre of Gauss map

Example ([Fukasawa (2005)])

$$
X: w y^{6}-\left(x^{6}+y^{6}+z^{6}\right) z=0 \subseteq \mathbb{P}^{3} \quad(p=3)
$$

\leadsto A general fibre of the Gauss map is a conic!

Remark

This is the first known example of a proj var s.t.
a gen fibre of the Gauss map is non-linear with dim >0 !

Theorem 14 ([Fukasawa (2006)])

For a given proj var Y in \mathbb{P}^{n} in characteristic $p>0$, \exists a proj var X of $\operatorname{dim} n$ s.t.
a general fibre of the Gauss map $\underset{\text { PGL }}{\sim} Y$.

4 Recent results
joint work with S．Fukasawa（深澤知）and K．Furukawa（古川勝久） FK：＝Fukasawa－Kaji FFK：＝Fukasawa－Furukawa－Kaji

Question

Which smooth proj var X has a $\left\{\begin{array}{l}\text { birational } \\ \text { biregular }\end{array}\right\}$ embedding with
insep Gauss map γ ？

Birational embedding case
Theorem 15 ([FK])
\forall alg function field K over k in $p>0$
\exists a proj model $X \subseteq \mathbb{P}^{N}$ of K s.t.
$\gamma \underset{\text { bir }}{\sim}$ the Frobenius morphism.
More precisely,

Birational embedding case

Theorem 15 ([FK])

\forall alg function field K over k in $p>0$
\exists a proj model $X \subseteq \mathbb{P}^{N}$ of K s.t.

$$
\gamma \underset{\text { bir }}{\sim} \text { the Frobenius morphism. }
$$

More precisely,
X a proj var of $\operatorname{dim} n$ in $p>0$.

1. For an integer r with $0 \leq r \leq n$, TFAE:
(a) \exists a birational embedding $X \rightarrow \mathbb{P}^{N}$ s.t.
γ gen finite \& rk $\gamma=r$;
(b) $(p, r) \neq(2,1)$.
2.

Here $\operatorname{rk} \gamma:=\operatorname{rk}\left(d_{x} \gamma: \boldsymbol{t}_{\boldsymbol{x}} \boldsymbol{X} \rightarrow \boldsymbol{t}_{\gamma(x)} \mathbb{G}\left(\boldsymbol{n}, \mathbb{P}^{\boldsymbol{N}}\right)\right)$ at a general $\boldsymbol{x} \in X$.

Birational embedding case

Theorem 15 ([FK])

\forall alg function field K over k in $p>0$
\exists a proj model $\boldsymbol{X} \subseteq \mathbb{P}^{N}$ of \boldsymbol{K} s.t.

$$
\gamma \underset{\text { bir }}{\sim} \text { the Frobenius morphism. }
$$

More precisely,
X a proj var of $\operatorname{dim} n$ in $p>0$.

1. For an integer r with $0 \leq r \leq n$, TFAE:
(a) \exists a birational embedding $X \rightarrow \mathbb{P}^{N}$ s.t. γ gen finite \& rk $\gamma=r$;
(b) $(p, r) \neq(2,1)$.
2. Moreover for any r satisfying (b) above, \exists a birational embedding $X \xrightarrow{N}$ s.t. $\boldsymbol{K}(\boldsymbol{X}) / \boldsymbol{K}(\gamma(\boldsymbol{X}))$ purely insep of degree \boldsymbol{p}^{n-r}.
Here $\operatorname{rk} \gamma:=\operatorname{rk}\left(d_{x} \gamma: \boldsymbol{t}_{\boldsymbol{x}} \boldsymbol{X} \rightarrow \boldsymbol{t}_{\gamma(x)} \mathbb{G}\left(n, \mathbb{P}^{\boldsymbol{N}}\right)\right)$ at a general $\boldsymbol{x} \in \boldsymbol{X}$.

Corollary ([FK])

\forall alg function field K over k in $p>0$
\exists a proj model $X \subseteq \mathbb{P}^{N}$ of K s.t. X is strange, i.e.,

$$
\exists P \in \mathbb{P}^{N}, \forall \text { smooth } x \in X, P \in T_{x} X
$$

Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

```
(GMRZ) \exists an embedding X }\longrightarrow\mp@subsup{\mathbb{P}}{}{M}\mathrm{ s.t. rk }\gamma=0
```


Remark

- A variety X satisfies (GMRZ) $\Rightarrow p>0$.
\because any rational map in $p=0$ is separable
$\leadsto \operatorname{rk} \gamma=\operatorname{dim} \gamma(X)>0$.
- A variety \boldsymbol{X} satisfies (GMRZ) $\Leftrightarrow d \gamma \equiv 0$

$$
\Leftrightarrow K(\gamma(X)) \subseteq K(X)^{p} \text { in } K(X)
$$

Example (GMRZ)

Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

$$
\text { (GMRZ) } \quad \exists \text { an embedding } X \hookrightarrow \mathbb{P}^{M} \text { s.t. rk } \gamma=0 .
$$

Remark

- A variety X satisfies (GMRZ) $\Rightarrow p>0$.
\because any rational map in $p=0$ is separable
$\sim \operatorname{rk} \gamma=\operatorname{dim} \gamma(X)>0$.
- A variety X satisfies (GMRZ) $\Leftrightarrow d \gamma \equiv 0$

$$
\Leftrightarrow K(\gamma(X)) \subseteq K(X)^{p} \text { in } K(X)
$$

Example (GMRZ)

A Fermat hypersurf X of degree $\equiv 1 \bmod p>0$ in \mathbb{P}^{N} satisfies (GMRZ).
\because The Gauss map γ_{0} for the embedding $X \hookrightarrow \mathbb{P}^{N}$ factors thru the Frobenius morphism.

Moreover we have

Theorem 16 ([FFK])

1. A Segre var $\prod_{1 \leq i \leq r} \mathbb{P}^{n_{i}}\left(r \geq 2, n_{i} \geq 1\right)$ satisfies (GMRZ) $\Leftrightarrow p=2 \& n_{i}=1(\forall i)$.
2. A Grassman var $\mathbb{G}(l, m)(1 \leq l<m)$ satisfies (GMRZ) $\Leftrightarrow l=1$ or $l=m-1$, i.e., a proj sp.
3. A smooth quadric hypersurf X in $\mathbb{P}^{N}(N \geq 3)$ satisfies (GMRZ) $\Leftrightarrow p=2 \& N=3$.
4. A smooth cubic hypersurf X in $\mathbb{P}^{N}(N \geq 3)$ satisfies (GMRZ) $\Rightarrow p=2$.

The results above follow from

Theorem 17 ([FFK])

X a proj var.
$f: \mathbb{P}^{1} \rightarrow X$ an unramified morphism.
$N_{f}:=\operatorname{ker}\left(f^{*}: f^{*} \Omega_{X}^{1} \rightarrow \Omega_{\mathbb{P}}^{1}\right)^{\vee}$ the normal bundle of f. Assume:

- X smooth along $f\left(\mathbb{P}^{1}\right)$.
- $N_{f}^{\vee} \simeq \bigoplus_{i \geq-1} \mathcal{O}_{\mathbb{P}^{1}}(i)^{r_{i}}\left(r_{i} \geq 0\right)$.

Then:

1. X satisfies $(G M R Z) \Rightarrow r_{i-1}=0$ or $r_{i}=0(\forall i \geq 0)$.
2. Moreover:
(a) $r_{i}>0(i \geq 0) \Rightarrow p=2$ or $p \mid i+1$.
(b) $r_{-1}>0 \Rightarrow p \mid \operatorname{deg} f^{*} \iota^{*} \mathcal{O}_{\mathbb{P}^{M}}(1)-1 \quad\left(\forall X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^{M}\right.$ s.t. $\left.d \gamma \equiv 0\right)$.

Proof

Theorem 17 ([FFK])

X a proj var.
$f: \mathbb{P}^{1} \rightarrow X$ an unramified morphism.
$N_{f}:=\operatorname{ker}\left(f^{*}: f^{*} \Omega_{X}^{1} \rightarrow \Omega_{\mathbb{P}^{1}}^{1}\right)^{\vee}$ the normal bundle of f.
Assume:

- X smooth along $f\left(\mathbb{P}^{1}\right)$.
- $N_{f}^{\vee} \simeq \bigoplus_{i \geq-1} \mathcal{O}_{\mathbb{P}^{1}}(i)^{r_{i}}\left(r_{i} \geq 0\right)$.

Then:

1. X satisfies $(G M R Z) \Rightarrow r_{i-1}=0$ or $r_{i}=0(\forall i \geq 0)$.
2. Moreover:
(a) $r_{i}>0(i \geq 0) \Rightarrow p=2$ or $p \mid i+1$.
(b) $r_{-1}>0 \Rightarrow p \mid \operatorname{deg} f^{*} \iota^{*} \mathcal{O}_{\mathbb{P}^{M}}(1)-1 \quad\left(\forall X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^{M}\right.$ s.t. rk $\left.\gamma=0\right)$.

Proof (Sketch) Assume: rk $\gamma=0$ for $\iota: X \hookrightarrow \mathbb{P}^{M}$, and set $\mathcal{L}:=\iota^{*} \mathcal{O}_{\mathbb{P}^{M}}(1)$.
$\Rightarrow \gamma \circ f: \mathbb{P}^{1} \rightarrow \mathbb{G}\left(n, \mathbb{P}^{M}\right)$ has rank zero.
\Rightarrow the splitting type of $f^{*} \mathcal{P}_{X}^{1}(\mathcal{L}) \equiv \overrightarrow{0} \bmod p$.
\sim information on p and N_{f}.
$\because 0 \rightarrow N_{f}^{\vee} \otimes f^{*} \mathcal{L} \rightarrow f^{*} \mathcal{P}_{X}^{1}(\mathcal{L}) \rightarrow \mathcal{P}_{\mathbb{P}^{1}}^{1}\left(f^{*} \mathcal{L}\right) \rightarrow 0$ splits, \& the splitting type of $\mathcal{P}_{\mathbb{P}^{1}}^{1}\left(f^{*} \mathcal{L}\right)=\ldots \square$

Cubic hypersurfaces
Theorem 18 ([FFK])
A smooth cubic X in $\mathbb{P}^{N}(N \geq 5)$ satisfies (GMRZ)
$\Leftrightarrow X \underset{\mathrm{PGL}}{\sim}$ a Fermat hypersurface in $p=2$.

Cubic hypersurfaces

Theorem 18 ([FFK])

A smooth cubic X in $\mathbb{P}^{N}(N \geq 5)$ satisfies (GMRZ) $\Leftrightarrow X \underset{\mathrm{PGL}}{\sim}$ a Fermat hypersurface in $p=2$.

Theorem 19 ([FFK])
A smooth cubic X in $\mathbb{P}^{N}(N \geq 3)$ in $p=2$ satisfies $\mathrm{rk} \gamma_{0}=0$ $\Leftrightarrow X \underset{\mathrm{PGL}}{\sim}$ a Fermat hypersurface.

Remark

The hard part in our proof of Theorem 17 is to show:
$(\mathrm{GMRZ}) \Rightarrow \mathrm{rk} \gamma_{0}=0$
for a smooth cubic $X \subseteq \mathbb{P}^{N}$, where we need $N \geq 5$.
The cases $N=3,4$ are open.

General hypersurfaces

Theorem 20 ([FFK])

A general hypersurf X of degree d in \mathbb{P}^{N} with $3 \leq d \leq 2 N-3$ satisfies (GMRZ)
$\Rightarrow p=2 \& d=2 N-3$.

Remark

$2 N-3-d=\chi\left(N_{L / X}\right)$ is the "expected dim" of $\{$ lines $L \subseteq X\}$.

Proof

General hypersurfaces

Theorem 20 ([FFK])

A general hypersurf \boldsymbol{X} of degree d in \mathbb{P}^{N} with $3 \leq d \leq 2 N-3$ satisfies (GMRZ)

$$
\Rightarrow p=2 \& d=2 N-3
$$

Remark

$2 N-3-d=\chi\left(N_{L / X}\right)$ is the "expected dim" of $\{$ lines $L \subseteq X\}$.

Proof

- The splitting type of N_{f} for lines $f\left(\mathbb{P}^{1}\right)$ on X $\leadsto p=2 \&$ either $d=2 N-3$ or $d=N-1$.
- To rule out the the latter case, assume $d=N-1$ and consider conics $f\left(\mathbb{P}^{1}\right)$ on X instead of lines.
- The point is to show: for a general conic $f\left(\mathbb{P}^{1}\right) \subseteq X$,

$$
N_{f} \simeq \mathcal{O}_{\mathbb{P}^{1}}(1)^{2} \oplus \mathcal{O}_{\mathbb{P}^{1}}^{N-4}
$$

$\sim N=4$.
\leadsto contradiction. \square

5 Geometry of rational curves on algebraic varieties

Definition

- A rational curve (or a morphism) $f: \mathbb{P}^{1} \rightarrow X$ is free $\underset{\text { def }}{\Leftrightarrow} f^{*} T_{X}$ is generated by its global sections.
- A free f is minimal (or standard)

$$
\begin{aligned}
& \underset{\text { def }}{\Leftrightarrow} f^{*} T_{X} \simeq \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \underbrace{\mathcal{O}_{\mathbb{P}^{1}}(1)^{a-2} \oplus \mathcal{O}_{\mathbb{P}^{1}}^{n-a+1}}_{N_{f}}, \\
& \text { where }
\end{aligned}
$$ $a=\operatorname{deg}\left(-f^{*} K_{X}\right) \& n=\operatorname{dim} X$.

Remark

A family of mini free rat curves
(characterization of
proj space \& quadric hypersurface, (Mori, Cho, Sato, Miyaoka, Araujo, Shepherd-Barron, Andreatta, Wiśniewski, Druel, Kovács, ... Fano var,
(Andreatta, Chierici, Occhetta, Araujo, ...) VMRT (=var of minimal rational tangents),
(Hwang, Kebekus, Mok, Conde, ...)

One of the most fundamental results in $p=0$ to guarantee the existence of minimal free rational curves would be as follows:

Fact ([Kollár, "Ratoinal Curves on Algebraic Varieties," (IV.2.10)])
For a smooth proj var \boldsymbol{X} in $p=0$,
\exists a free rat curve on $X \Rightarrow \exists$ a minimal free rat curve on X.

This is no longer true in positive char!

One of the most fundamental results in $p=0$ to guarantee the existence of minimal free rational curves would be as follows:

Fact ([Kollár,"Ratoinal Curves on Algebraic Varieties," (IV.2.10)])

For a smooth proj var X in $p=0$,
\exists a free rat curve on $X \Rightarrow \exists$ a minimal free rat curve on X.

This is no longer true in positive char!
Theorem 21 ([FFK])
X a Fermat hypersurface of degree $d \equiv 1 \bmod p>0$ in \mathbb{P}^{N}. Then:

$$
\begin{aligned}
N \geq 2 d-1 \Rightarrow X & \begin{array}{l}
\text { has a free rational curve but } \\
\text { no minimal free rational curve. }
\end{array}
\end{aligned}
$$

This basically follows from

Theorem 22 ([FFK])

X a proj var of $\operatorname{dim} n$. $f: \mathbb{P}^{1} \rightarrow X$ a minimal free rational curve s.t.
X smooth along $f\left(\mathbb{P}^{1}\right)$.
Assume:
X satisfies (GMRZ) with $\iota: X \hookrightarrow \mathbb{P}^{M}$.
Then, one of the following holds:

1. $\operatorname{deg}\left(-f^{*} K_{X}\right)=n+1, d>p \& p \mid d-1$;
2. $\operatorname{deg}\left(-f^{*} K_{X}\right)=p=2 \& 2 \mid d$,
where $d:=\operatorname{deg} f^{*} \iota^{*} \mathcal{O}_{\mathbb{P}^{M}}(1)$.

Both cases actually occur!

Example 1

1. A proj space \mathbb{P}^{n} in $p>0$ satisfies (GMRZ), and a line $L \subseteq \mathbb{P}^{n}$ is minimal free with

$$
\operatorname{deg}\left(-\left.\boldsymbol{K}_{\mathbb{P}}\right|_{L}\right)=n+1
$$

2. A Segre var $\left(\mathbb{P}^{1}\right)^{n}$ in $p=2$ satisfies (GMRZ), and a fibre $L:=\mathbb{P}^{1} \times\{$ a point $\} \subseteq\left(\mathbb{P}^{1}\right)^{n}$ is minimal free with $\operatorname{deg}\left(-\left.K_{\left(\mathbb{P}^{1}\right)^{n}}\right|_{L}\right)=2=p$.

Example 1

1. A proj space \mathbb{P}^{n} in $p>0$ satisfies (GMRZ), and a line $L \subseteq \mathbb{P}^{n}$ is minimal free with

$$
\operatorname{deg}\left(-\left.\boldsymbol{K}_{\mathbb{P}}\right|_{L}\right)=n+1
$$

2. A Segre var $\left(\mathbb{P}^{1}\right)^{n}$ in $p=2$ satisfies (GMRZ), and a fibre $L:=\mathbb{P}^{1} \times\{$ a point $\} \subseteq\left(\mathbb{P}^{1}\right)^{n}$ is minimal free with

$$
\operatorname{deg}\left(-\left.\boldsymbol{K}_{\left(\mathbb{P}^{1}\right)^{n}}\right|_{L}\right)=2=p
$$

Example 2

A Fermat cubic surface $X \subseteq \mathbb{P}^{3}$ in $p=2$ satisfies (GMRZ).

1. A twisted cubic curve $C_{3} \subseteq X$ is minimal free with

$$
\operatorname{deg}\left(-\left.K_{X}\right|_{C_{3}}\right)=3=2+1
$$

2. A conic $C_{2} \subseteq X$ is minimal free with

$$
\operatorname{deg}\left(-\left.K_{X}\right|_{C_{2}}\right)=2=p
$$

6 Final comments

Question For a proj var X in \mathbb{P}^{N} in $p>0$,
The Gauss map γ is separable.
$\stackrel{?}{\Rightarrow}$ $\Leftarrow \gamma$ is birational for smooth \boldsymbol{X}.

6 Final comments

Question For a prof var X in \mathbb{P}^{N} in $p>0$,
The Gauss map γ is separable.
$\stackrel{?}{\Rightarrow}$ a general fiber of γ is linear, egg., γ is binational for smooth \boldsymbol{X}.
$[F K(2007)]_{\Downarrow}$ if $n \leq 2 . \quad[K P(1991)] \pi$ if $n \geq 3 .\left\{\begin{array}{l}{[K(2003)]} \\ {[F(2006)]}\end{array}\right.$
X is reflexive.

Definition

$$
n:=\operatorname{dim} X
$$

X is reflexive

$$
\left.\begin{array}{l}
\underset{\text { def }}{\Leftrightarrow} C(X)=C\left(X^{*}\right) \text { via a natural ism } \mathbb{P}^{N} \times \check{\mathbb{P}}^{N} \simeq \check{\mathbb{P}}^{N} \times \check{\mathbb{P}}^{N}, \\
\text { here } \quad(x, H)
\end{array}\right)\left(\boldsymbol{H}, x^{* *}\right),
$$

where

$$
\begin{aligned}
& C(X):=\left\{(x, H) \mid T_{x} X \subseteq H, x \in X \text { a smooth pt }\right\}^{-} \subseteq \mathbb{P}^{N} \times \check{\mathbb{P}}^{N} \\
& \text { the conormal var of } X, \\
& X^{*}:=\operatorname{Im}(C(X) \underset{\text { and prod }}{\underset{\mathbb{P}}{N}}) \text { the dual var of } X .
\end{aligned}
$$

Thank you for your attention!

