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0 Introduction

This is a story of projective algebraic geometry in positive characteristic. I
survey a history of studies on Gauss maps of projective varieties in positive
characteristic, and state some recent results.
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0 Introduction

This is a story of projective algebraic geometry in positive characteristic. I
survey a history of studies on Gauss maps of projective varieties in positive
characteristic, and state some recent results.

The theme of those studies is originally condensed into the following:

Problem ([Kleiman (1987)])

“It would be good to have an example of a smooth curve X such
that every tangent makes 2 or more contacts or to prove that such
X do not exist.”

S.Kleiman (with A.Thorup), “Intersection theory and enu-
merative geometry: A decade in review,” in “Algbraic Ge-
ometry — Bowdoin 1985,” S.J.Bloch (ed.) Proc. Sym-
posia Pure Math. 46–Part 2 (1987), pp. 321–370.
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1 Examples and the definition of a Gauss map

Example 1 ([Wallace (1956)])

X : xp+1 + yp+1 + zp+1 = 0 ⊆ P2 (p > 0)

• TPX = {apx + bpy + cpz = 0} for P = (a : b : c) ∈ X.

• the contact multiplicity: i(X, TPX; P ) = p for a general P ∈ X.

In fact, X ∩ TPX = pP + Q with Q := (ap2
: bp2

: cp2
).

•
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X : xp+1 + yp+1 + zp+1 = 0 ⊆ P2 (p > 0)

• TPX = {apx + bpy + cpz = 0} for P = (a : b : c) ∈ X.

• the contact multiplicity: i(X, TPX; P ) = p for a general P ∈ X.

In fact, X ∩ TPX = pP + Q with Q := (ap2
: bp2

: cp2
).

• the dual map is given by

γ : X → P̌2; P = (a : b : c) &→ [TPX] = (ap : bp : cp),

where P2 ⊇ {ξx + ηy + ζz = 0} ↔ (ξ : η : ζ) ∈ P̌2.
• the dual curve X∗ := γ(X) = {[TPX] ∈ P̌2|P ∈ X}.

! X∗ = {ξp+1 + ηp+1 + ζp+1 = 0} * X.

Why?
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Example 1 ([Wallace (1956)])

X : xp+1 + yp+1 + zp+1 = 0 ⊆ P2 (p > 0)

• TPX = {apx + bpy + cpz = 0} for P = (a : b : c) ∈ X.

• the contact multiplicity: i(X, TPX; P ) = p for a general P ∈ X.

In fact, X ∩ TPX = pP + Q with Q := (ap2
: bp2

: cp2
).

• the dual map is given by

γ : X → P̌2; P = (a : b : c) &→ [TPX] = (ap : bp : cp),

where P2 ⊇ {ξx + ηy + ζz = 0} ↔ (ξ : η : ζ) ∈ P̌2.
• the dual curve X∗ := γ(X) = {[TPX] ∈ P̌2|P ∈ X}.

! X∗ = {ξp+1 + ηp+1 + ζp+1 = 0} * X.

∵ (ap)p+1 + (bp)p+1 + (cp)p+1

= (ap+1)p + (bp+1)p + (cp+1)p

= (ap+1 + bp+1 + cp+1)p = 0 (∵ (a : b : c) ∈ X). "
! γ = the Frobenius morphism of X (= X∗∗ via P2 = ˇ̌P2).

• K(X)/K(X∗) purely inseparable of degree p.
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Example 2 (strange curve)

X : y = xp ⊆ A2 (p > 0)

• TPX = {y − ap = 0} for P = (a, ap) ∈ X (∵ dy
dx

= pxp−1 = 0)

! all tangent lines are parallel to x-axis, i.e.,
all proj tangent lines , a common pt (1 : 0 : 0) ∈ P2,

where A2 = {(x : y : 1))} ⊆ P2.
! X a “strange” curve.

•
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where A2 = {(x : y : 1))} ⊆ P2.
! X a “strange” curve.

• the dual map is given by

γ : X ##$ X∗; P = (a, ap) &→ [TPX] = (0 : 1 : −ap)

! X∗ = {ξ = 0} a line in P̌2.
! X∗∗ = {(1 : 0 : 0)} -= X via ˇ̌P2 = P2.

• K(X)/K(X∗) purely inseparable of degree p.
•
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Example 2 (strange curve)

X : y = xp ⊆ A2 (p > 0)

• TPX = {y − ap = 0} for P = (a, ap) ∈ X (∵ dy
dx

= pxp−1 = 0)

! all tangent lines are parallel to x-axis, i.e.,
all proj tangent lines , a common pt (1 : 0 : 0) ∈ P2,

where A2 = {(x : y : 1))} ⊆ P2.
! X a “strange” curve.

• the dual map is given by

γ : X ##$ X∗; P = (a, ap) &→ [TPX] = (0 : 1 : −ap)

! X∗ = {ξ = 0} a line in P̌2.
! X∗∗ = {(1 : 0 : 0)} -= X via ˇ̌P2 = P2.

• K(X)/K(X∗) purely inseparable of degree p.
• Note that X smooth ⇔ p = 2.

Fact ([Lluis (1962)], [Samuel (1966)])

The only non-linear smooth strange curve X in PN is
a conic in p = 2.
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Definition (Gauss map)

For a non-linear algebraic variety X of dim n in PN ,
γ : X ##$ G(n, N); x &→ TxX,

where
TxX ⊆ PN the proj tangent space to X at a smooth pt x.

Remark

N = 2, n = 1 ⇒ γ = the dual map X ##$ X∗.

Remark For a generically finite γ,

# of

(
contacts of a general
proj tangent space

)
as a set = [K(X) : K(γ(X))]s

separable degree of γ

Problem ([Kleiman (1987)]) rephrased as:

∃ ? a smooth proj curve X s.t. γ has separable degree > 1 or
prove that such an X does not exist.
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2 Gauss maps of projective curves

Remark For a proj curve X,

p = 0 ⇒ γ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and
seem to be caused by the inseparability of Gauss maps γ.

Fact
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2 Gauss maps of projective curves

Remark For a proj curve X,

p = 0 ⇒ γ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and
seem to be caused by the inseparability of Gauss maps γ.

Fact ([K (1989)]) For a proj curve X,

• γ is separable ⇒ γ is birational (classically known for X ⊆ P2).

• p -= 2 ⇔ ∃ a proj embedding of X s.t. γ is birational.

=

biregular embedding into some proj space
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Birational embeddings of smooth proj curves (possibly singular case)

Theorem 1 ([Wallace (1956)], [Kleiman (1986)])

∀ curve X ′ ⊆ P̌2 in p > 0, ∀s ≥ 1, ∀r ≥ 1,
∃ a curve X ⊆ P2 s.t.

γ(X) = X ′ &

{
[K(X) : K(X ′)]s = s,
[K(X) : K(X ′)]i = pr.

Theorem 2 ([K (1989)])

∀ inseparable ext K/K′ of function fields of dim 1,
∃ a proj model X ⊆ PN of K s.t.

K/K′ = K(X)/K(γ(X)).

Remark

Those curves X in Theorems above are singular in most cases. So,
it would be natural to assume the smoothness in the problem.
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Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

∀ inseparable finite extension K(P1)/K′ of function fields,
∃ a smooth rational curve X ⊆ PN s.t.

K(P1)/K′ = K(X)/K(γ(X)).

Proof
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Rational curves

Proposition 3 ([K (1986)], [Rathmann (1987)])

∀ inseparable finite extension K(P1)/K′ of function fields,
∃ a smooth rational curve X ⊆ PN s.t.

K(P1)/K′ = K(X)/K(γ(X)).

Proof

• Take f : P1 → P1 a finite morphism.
↔ K(P1)/K′ a given insep finite extension (! K′ * K(P1))

• embed its graph Γf := {(x, f(x))|x ∈ P1} ⊆ P1 × P1 into P3

so that P1 × P1 is a quadric surface.
• X := the image of Γf in P3.

! f is recovered as the Gauss map γ of X.
∵ every fibre P1 × {y} is a line in P3,

tangent to X because of the inseparability of f . "
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Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K′ of the function field K(X) shows up as
K(γ(X)), the function field of the image of the Gauss map ι
for a biregular embedding of X into some PM?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

K′ :=

{
K(γ(X)) ⊆ K(X)

∣∣∣∣γ
the Gauss map of
a biregular embedding of X

}
.

Remark
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Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K′ of the function field K(X) shows up as
K(γ(X)), the function field of the image of the Gauss map ι
for a biregular embedding of X into some PM?

Definition (subfields given by Gauss maps)

For a smooth proj curve X, consider

K′ :=

{
K(γ(X)) ⊆ K(X)

∣∣∣∣γ
the Gauss map of
a biregular embedding of X

}
.

Remark With this notation, the known results are described as follows:

• p = 0 ⇒ K′ = {K(X)} for any X.
• K′ ∈ K′ & K(X)/K′ separable ⇒ K′ = K(X).
• p -= 2 ⇔ K(X) ∈ K′ for any X.
• For X = P1, K′\{K(P1)} = {K′ ⊆ K(P1)|K(P1)/K′ finite insep ext}.
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Elliptic curves

Theorem 4 ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

K′ \ {K(X)} =

{
K(X ′) ⊆ K(X)

∣∣∣∣
X → X ′ insep isogeny, and
X̂ ← X̂ ′ separable cyclic

}

=

{
K′ ⊆ K(X)

∣∣∣∣
K(X)/K′ insep finite, and
K′

s/K′ cyclic of deg -≡ 0 mod p

}
,

where

X̂ := Pic0 X the dual of X, and
K′

s the separable closure of K′ in K(X).

Recall that for an elliptic curve X in char p > 0,

X is said to be

{
ordinary if r = 1,

supersingular if r = 0,
where r is the p-rank of X defined by

# ker(pX : X → X; x &→ p · x) = pr. (! r = 0, 1)
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Elliptic curves

Theorem 4 ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

K′ \ {K(X)} =

{
K(X ′) ⊆ K(X)

∣∣∣∣
X → X ′ insep isogeny, and
X̂ ← X̂ ′ separable cyclic

}

=

{
K′ ⊆ K(X)

∣∣∣∣
K(X)/K′ insep finite, and
K′

s/K′ cyclic of deg -≡ 0 mod p

}
,

where

X̂ := Pic0 X the dual of X, and
K′

s the separable closure of K′ in K(X).

Theorem 5 ([K (1989)])

If X is a supersingular elliptic curve, then

K′ =

{
{K(X)2, K(X)22}, if p = 2,

{K(X), K(X)p}, if p > 2.
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Key observation

Theorem 6 ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K(X)/K′, TFAE:

1. K′ ∈ K′;
2. ∃ a vector bundle E of rank 2 on X ′ and
∃ an embedding ϕ : X ↪→ P(E) s.t.

K(X)/K′ = K(ϕ(X))/K(X ′),

where X ′ a smooth proj model of K′.

!

X
ϕ
↪→ P(E)
↘ ↓

X ′
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Key observation

Theorem 6 ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K(X)/K′, TFAE:

1. K′ ∈ K′;
2. ∃ a vector bundle E of rank 2 on X ′ and
∃ an embedding ϕ : X ↪→ P(E) s.t.

K(X)/K′ = K(ϕ(X))/K(X ′),

where X ′ a smooth proj model of K′.

!

X
ϕ
↪→ P(E)
↘ ↓

X ′

Remark The idea of the proof of (1) ⇐ (2):

• embed P(E) into some PM as a scroll, and

• consider ι : X
ϕ
↪→ P(E) ↪→ PM , the composite morphism.

! the image of any fibre of P(E) → X ′ is
a line tangents to ι(X) in PM , and

the Gauss map of ι(X) ∼
bir

X → X ′ defined via ϕ.
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Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus g ≥ 2.
F : X → X ′ the Frobenius morphism.
Then TFAE:

1. K(X)p ∈ K′ (i.e., ∃ι : X ↪→ PM with γ ∼
bir

the Frob morph);

2. ∃ a stable vector bundle E on X ′, and ∃ L ∈ Pic X s.t.

F ∗E * P1
X(L).

where
P1

X(L) the bundle of principal parts of first order of L.
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Curves with higher genus

Theorem 7 ([K (1989)])

X a smooth proj curve of genus g ≥ 2.
F : X → X ′ the Frobenius morphism.
Then TFAE:

1. K(X)p ∈ K′ (i.e., ∃ι : X ↪→ PM with γ ∼
bir

the Frob morph);

2. ∃ a stable vector bundle E on X ′, and ∃ L ∈ Pic X s.t.

F ∗E * P1
X(L).

where
P1

X(L) the bundle of principal parts of first order of L.

Remark The idea of the proof of (1) ⇐ (2):

Apply the Key Observation (Theorem 6) with the stable E above and

ϕ : X * P(L) ↪→ P(P1
X(L)) * P(F ∗E) → P(E),

which turns out to be an embedding.
∃ a natural exact sequence,

0 → Ω1
X ⊗ L → P1(L) → L→ 0.
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Definition (Tango-Raynaud curve)

X is a Tango-Raynaud curve

⇔
def
∃ N ∈ Pic X ′ s.t.

• F ∗N * Ω1
X

• F ∗ : H1(X ′, N∨) → H1(X, F ∗N∨) not injective
where F : X → X ′ the Frobenius morphism.

Remark

A Tango-Raynaud curve !
∃ alg surfaces for which the
Kodaira vanishing theorem does
not hold.

Example
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Definition (Tango-Raynaud curve)

X is a Tango-Raynaud curve

⇔
def
∃ N ∈ Pic X ′ s.t.

• F ∗N * Ω1
X

• F ∗ : H1(X ′, N∨) → H1(X, F ∗N∨) not injective
where F : X → X ′ the Frobenius morphism.

Remark

A Tango-Raynaud curve !
∃ alg surfaces for which the
Kodaira vanishing theorem does
not hold.

Example (Theorem 7) For a Tango-Raynaud curve X of g ≥ 2,

(0 → OX′ → E → N → 0) ↔ 0 -= ξ ∈ ker F ∗ ⊆ Ext1
X′(N , OX′)

↑
satisfies (2) in Theorem 7.

In fact, E stable, and
F ∗E * OX ⊕ Ω1

X = P1
X(OX).
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Generic injectivity of Gauss map

Theorem 8 ([K (1989)])

X a proj curve of genus g in PN .
g′ the genus of the normalization of γ(X).
Then:

X smooth or nodal ⇒ g = g′.

In particular:

g ≥ 2 ⇒ γ birational or purely inseparable, i.e.,
generically injective.
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Theorem 9 ([K (1991)], [Kleiman-Piene (1991)])

X a proj curve of genus g in PN

ν := deg Ω1
X̃/PN the # of cusps of X (X̃ the normalization of X)

Then:

ν < 2g − 2 ⇒ γ generically injective.

Theorem 10 ([Kleiman-Piene (1991)]) With the same notation as above,

s the separable degree of γ.
Then:

2s(g − g′) ≤ (s− 1)ν.

In particular, ν = 0 ⇒ g = g′.



(16)

Brief Summary (proj curves):

• possibly singular case:

∀ insep finite ext K/K′ of function fields of dim 1,
∃ a proj model X of K s.t.

K/K′ = K(X)/K(γ(X)).

possible to take X to be smooth for rational K.

• smooth case:

rational curves
ordinary elliptic curves

}
⇒

∃ a biregular embedding s.t.
the Gauss map has
separable degree > 1, i.e.,
not generically injective.

g(X) = g(γ̃(X)).

supersingular elliptic curves
higher genus curves

}
⇒

the Gauss map of
any biregular embedding is
generically injective.
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3 Gauss maps of projective varieties

The Gauss map of a proj var X of dim n in PN is

γ : X ##$ G(n, N); x &→ TxX.

Fact

• [Griffiths-Harris (1979)]: p = 0 ⇒ a gen fibre of γ is linear.
• [Zak (1993?)]: X smooth ⇒ γ is finite in arbitrary char.
Hence, X smooth in p = 0 ⇒ γ is birational finite.
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Generic injectivity of Gauss map

Theorem 11 ([Kleiman-Piene (1991)])

X a smooth complete intersection of dim n and degree ≥ 2.
Assume:

γ(X) smooth.
Then:

cn(X) = cn(γ(X)).

Theorem 12 The generic injectivity of the Gauss map holds for

1. [Kleiman-Piene (1991)]: a smooth complete int of dim 2.
2. [K-Noma (1997)]: a smooth proj var with generically ample cotangent

bundle.
3. [Noma (1997)]: a smooth weighted complete int of general type with

dim ≥ 3.
4. [Noma (1997)]: a smooth proj var of dim 2 or 3 with µ-semistable

tangent bundle.
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Gauss map with non-trivial separable degree

Theorem 13 ([Noma (2001)])

1. ∃ examples of proj var with an embedding s.t. the Gauss map of
separable degree > 1 as follows:

(a) a smooth var of non-general type (i.e., Kodaira dim κ <n ).
(b) a normal var of general type with only isolated sing.

2. ∃ an embedding of a proj space Pn into some proj space s.t.

the Gauss map has separable degree > 1 and
its image = a normal var of general type.
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A new direction: a general fibre of Gauss map

Example ([Fukasawa (2005)])

X : wy6 − (x6 + y6 + z6)z = 0 ⊆ P3 (p = 3)
! A general fibre of the Gauss map is a conic!

Remark

This is the first known example of a proj var s.t.
a gen fibre of the Gauss map is non-linear with dim > 0!

Theorem 14 ([Fukasawa (2006)])

For a given proj var Y in Pn in characteristic p > 0,
∃ a proj var X of dim n s.t.

a general fibre of the Gauss map ∼
PGL

Y .
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4 Recent results
joint work with S.Fukasawa (深澤 知) and K.Furukawa (古川勝久)

FK:=Fukasawa-Kaji FFK:=Fukasawa-Furukawa-Kaji

Question

Which smooth proj var X has a

{
birational
biregular

}
embedding with

insep Gauss map γ?
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Birational embedding case

Theorem 15 ([FK])

∀ alg function field K over k in p > 0
∃ a proj model X ⊆ PN of K s.t.

γ ∼
bir

the Frobenius morphism.

More precisely,
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Birational embedding case

Theorem 15 ([FK])

∀ alg function field K over k in p > 0
∃ a proj model X ⊆ PN of K s.t.

γ ∼
bir

the Frobenius morphism.

More precisely,

X a proj var of dim n in p > 0.

1. For an integer r with 0 ≤ r ≤ n, TFAE:
(a) ∃ a birational embedding X ##$ PN s.t.

γ gen finite & rk γ = r;
(b) (p, r) -= (2, 1).

2. 　
　　

　　

Here rk γ := rk(dxγ : txX → tγ(x)G(n, PN)) at a general x ∈ X.
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Birational embedding case

Theorem 15 ([FK])

∀ alg function field K over k in p > 0
∃ a proj model X ⊆ PN of K s.t.

γ ∼
bir

the Frobenius morphism.

More precisely,

X a proj var of dim n in p > 0.

1. For an integer r with 0 ≤ r ≤ n, TFAE:
(a) ∃ a birational embedding X ##$ PN s.t.

γ gen finite & rk γ = r;
(b) (p, r) -= (2, 1).

2. Moreover for any r satisfying (b) above,
∃ a birational embedding X ##$ PN s.t.

K(X)/K(γ(X)) purely insep of degree pn−r.

Here rk γ := rk(dxγ : txX → tγ(x)G(n, PN)) at a general x ∈ X.
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Corollary ([FK])

∀ alg function field K over k in p > 0
∃ a proj model X ⊆ PN of K s.t. X is strange, i.e.,

∃P ∈ PN, ∀ smooth x ∈ X, P ∈ TxX
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Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

(GMRZ) ∃ an embedding X ↪→ PM s.t. rk γ = 0.

Remark

• A variety X satisfies (GMRZ) ⇒ p > 0.
∵ any rational map in p = 0 is separable

! rk γ = dim γ(X) > 0.
• A variety X satisfies (GMRZ) ⇔ dγ ≡ 0

⇔ K(γ(X)) ⊆ K(X)p in K(X).

Example (GMRZ)
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Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

(GMRZ) ∃ an embedding X ↪→ PM s.t. rk γ = 0.

Remark

• A variety X satisfies (GMRZ) ⇒ p > 0.
∵ any rational map in p = 0 is separable

! rk γ = dim γ(X) > 0.
• A variety X satisfies (GMRZ) ⇔ dγ ≡ 0

⇔ K(γ(X)) ⊆ K(X)p in K(X).

Example (GMRZ)

A Fermat hypersurf X of degree ≡ 1 mod p > 0 in PN

satisfies (GMRZ).

∵ The Gauss map γ0 for the embedding X ↪→ PN

factors thru the Frobenius morphism.

Moreover we have
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Theorem 16 ([FFK])

1. A Segre var
∏

1≤i≤r Pni (r ≥ 2, ni ≥ 1) satisfies (GMRZ)
⇔ p = 2 & ni = 1 (∀i).

2. A Grassman var G(l, m) (1 ≤ l < m) satisfies (GMRZ)
⇔ l = 1 or l = m− 1, i.e., a proj sp.

3. A smooth quadric hypersurf X in PN (N ≥ 3) satisfies (GMRZ)
⇔ p = 2 & N = 3.

4. A smooth cubic hypersurf X in PN (N ≥ 3) satisfies (GMRZ)
⇒ p = 2.

The results above follow from
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Theorem 17 ([FFK])

X a proj var.
f : P1 → X an unramified morphism.
Nf := ker(f∗ : f∗Ω1

X → Ω1
P1)
∨ the normal bundle of f .

Assume:
• X smooth along f(P1).
• N∨

f *
⊕

i ≥ −1 OP1(i)ri (ri ≥ 0).
Then:

1. X satisfies (GMRZ) ⇒ ri−1 = 0 or ri = 0 (∀i ≥ 0).
2. Moreover:
(a) ri > 0 (i ≥ 0) ⇒ p = 2 or p|i + 1.

(b) r−1 > 0 ⇒ p| deg f∗ι∗OPM(1)− 1 (∀X ι
↪→ PM s.t. dγ ≡ 0).

Proof
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Theorem 17 ([FFK])

X a proj var.
f : P1 → X an unramified morphism.
Nf := ker(f∗ : f∗Ω1

X → Ω1
P1)
∨ the normal bundle of f .

Assume:
• X smooth along f(P1).
• N∨

f *
⊕

i ≥ −1 OP1(i)ri (ri ≥ 0).
Then:

1. X satisfies (GMRZ) ⇒ ri−1 = 0 or ri = 0 (∀i ≥ 0).
2. Moreover:
(a) ri > 0 (i ≥ 0) ⇒ p = 2 or p|i + 1.

(b) r−1 > 0 ⇒ p| deg f∗ι∗OPM(1)− 1 (∀X ι
↪→ PM s.t. rk γ = 0).

Proof (Sketch) Assume: rk γ = 0 for ι : X ↪→ PM , and set L := ι∗OPM(1).

⇒ γ ◦ f : P1 → G(n, PM) has rank zero.
⇒ the splitting type of f∗P1

X(L) ≡ −→0 mod p.
! information on p and Nf .

∵ 0 → N∨
f ⊗ f∗L → f∗P1

X(L) → P1
P1(f

∗L) → 0 splits, &
the splitting type of P1

P1(f
∗L) = ... "
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Cubic hypersurfaces

Theorem 18 ([FFK])

A smooth cubic X in PN (N ≥ 5) satisfies (GMRZ)
⇔ X ∼

PGL
a Fermat hypersurface in p = 2.
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Cubic hypersurfaces

Theorem 18 ([FFK])

A smooth cubic X in PN (N ≥ 5) satisfies (GMRZ)
⇔ X ∼

PGL
a Fermat hypersurface in p = 2.

Theorem 19 ([FFK])

A smooth cubic X in PN (N ≥ 3) in p = 2 satisfies rk γ0 = 0
⇔ X ∼

PGL
a Fermat hypersurface.

Remark

The hard part in our proof of Theorem 17 is to show:

(GMRZ) ⇒ rk γ0 = 0

for a smooth cubic X ⊆ PN , where we need N ≥ 5.
The cases N = 3, 4 are open.
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General hypersurfaces

Theorem 20 ([FFK])

A general hypersurf X of degree d in PN with 3 ≤ d ≤ 2N − 3
satisfies (GMRZ)
⇒ p = 2 & d = 2N − 3.

Remark

2N − 3− d = χ(NL/X) is the “expected dim” of {lines L ⊆ X}.

Proof
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General hypersurfaces

Theorem 20 ([FFK])

A general hypersurf X of degree d in PN with 3 ≤ d ≤ 2N − 3
satisfies (GMRZ)
⇒ p = 2 & d = 2N − 3.

Remark

2N − 3− d = χ(NL/X) is the “expected dim” of {lines L ⊆ X}.

Proof

• The splitting type of Nf for lines f(P1) on X
! p = 2 & either d = 2N − 3 or d = N − 1.

• To rule out the the latter case, assume d = N − 1 and consider
conics f(P1) on X instead of lines.

• The point is to show: for a general conic f(P1) ⊆ X,

Nf * OP1(1)2 ⊕ON−4
P1 .

! N = 4.
! contradiction. "
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5 Geometry of rational curves on algebraic varieties

Definition

• A rational curve (or a morphism) f : P1 → X is free
⇔
def

f∗TX is generated by its global sections.

• A free f is minimal (or standard)

⇔
def

f∗TX * OP1(2)⊕ OP1(1)a−2 ⊕On−a+1
P1

︸ ︷︷ ︸
Nf

,

where
a = deg(−f∗KX) & n = dim X.

Remark

A family of
mini free rat curves

!






characterization of
proj space & quadric hypersurface,


Mori, Cho, Sato, Miyaoka, Araujo,

Shepherd-Barron, Andreatta,
Wísniewski, Druel, Kovács, ...





Fano var,
(Andreatta, Chierici, Occhetta, Araujo, ...)

VMRT (=var of minimal rational tangents),
(Hwang, Kebekus, Mok, Conde, ...)

...
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One of the most fundamental results in p = 0 to guarantee
the existence of minimal free rational curves would be as follows:

Fact ([Kollár,“Ratoinal Curves on Algebraic Varieties,” (IV.2.10)])

For a smooth proj var X in p = 0,

∃ a free rat curve on X ⇒ ∃ a minimal free rat curve on X.

This is no longer true in positive char!
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One of the most fundamental results in p = 0 to guarantee
the existence of minimal free rational curves would be as follows:

Fact ([Kollár,“Ratoinal Curves on Algebraic Varieties,” (IV.2.10)])

For a smooth proj var X in p = 0,

∃ a free rat curve on X ⇒ ∃ a minimal free rat curve on X.

This is no longer true in positive char!

Theorem 21 ([FFK])

X a Fermat hypersurface of degree d ≡ 1 mod p > 0 in PN .
Then:

N ≥ 2d− 1 ⇒ X has a free rational curve but
no minimal free rational curve.

This basically follows from
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Theorem 22 ([FFK])

X a proj var of dim n.
f : P1 → X a minimal free rational curve s.t.

X smooth along f(P1).
Assume:

X satisfies (GMRZ) with ι : X ↪→ PM .
Then, one of the following holds:

1. deg(−f∗KX) = n + 1, d > p & p|d− 1;

2. deg(−f∗KX) = p = 2 & 2|d,

where d := deg f∗ι∗OPM(1).

Both cases actually occur!
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Example 1

1. A proj space Pn in p > 0 satisfies (GMRZ), and
a line L ⊆ Pn is minimal free with

deg(−KPn|L) = n + 1.

2. A Segre var (P1)n in p = 2 satisfies (GMRZ), and
a fibre L := P1 × {a point} ⊆ (P1)n is minimal free with

deg(−K(P1)n|L) = 2 = p.
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Example 1

1. A proj space Pn in p > 0 satisfies (GMRZ), and
a line L ⊆ Pn is minimal free with

deg(−KPn|L) = n + 1.

2. A Segre var (P1)n in p = 2 satisfies (GMRZ), and
a fibre L := P1 × {a point} ⊆ (P1)n is minimal free with

deg(−K(P1)n|L) = 2 = p.

Example 2

A Fermat cubic surface X ⊆ P3 in p = 2 satisfies (GMRZ).

1. A twisted cubic curve C3 ⊆ X is minimal free with
deg(−KX|C3) = 3 = 2 + 1.

2. A conic C2 ⊆ X is minimal free with
deg(−KX|C2) = 2 = p.
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6 Final comments

Question For a proj var X in PN in p > 0,

The Gauss map γ is separable.
?⇒
⇐

a general fiber of γ is linear, e.g.,
γ is birational for smooth X.
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6 Final comments

Question For a proj var X in PN in p > 0,

The Gauss map γ is separable.
?⇒
⇐

a general fiber of γ is linear, e.g.,
γ is birational for smooth X.

[FK (2007)] ⇒ if n ≤ 2. [KP (1991)] ⇒⇓— if n ≥ 3.

{
[K (2003)]
[F (2006)]

X is reflexive.

n := dim XDefinition

X is reflexive
⇔
def

C(X) = C(X∗) via a natural isom PN × P̌N * P̌N × ˇ̌PN,

(x, H) ↔ (H, x∗∗)
where

C(X) := {(x, H)|TxX ⊆ H, x ∈ X a smooth pt}− ⊆ PN × P̌N

the conormal var of X,
X∗ := Im(C(X) →

2nd proj
P̌N) the dual var of X.
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Thank you for your attention!


