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0O Introduction

This is a story of projective algebraic geometry in positive characteristic. |
survey a history of studies on Gauss maps of projective varieties in positive
characteristic, and state some recent results.



0O Introduction

This is a story of projective algebraic geometry in positive characteristic. |
survey a history of studies on Gauss maps of projective varieties in positive
characteristic, and state some recent results.

The theme of those studies is originally condensed into the following:

Problem | ([Kleiman (1987)])

“It would be good to have an example of a smooth curve X such
that every tangent makes 2 or more contacts or to prove that such
X do not exist.”

S.Kleiman (with A.Thorup), “Intersection theory and enu-
merative geometry: A decade in review,” in “Algbraic Ge-
ometry — Bowdoin 1985,” S.J.Bloch (ed.) Proc. Sym-
posia Pure Math. 46—Part 2 (1987), pp. 321-370.
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1 Examples and the definition of a Gauss map

Example 1| ([Wallace (1956)])
X :xPt Pt 4 2Pt = C P (p > 0)
e TpX = {a’x+bPy +c?z=0}for P=(a:b:c) € X.
e the contact multiplicity: 2(X,TpX; P) = p for a general P € X.
In fact, X NTpX = pP + Q with Q := (ap2 . bP” cp2).



1 Examples and the definition of a Gauss map

Example 1| ([Wallace (1956)])
X :xPt Pt 4 2Pt = C P (p > 0)
e TpX = {a’x+bPy +c?z=0}for P=(a:b:c) € X.
e the contact multiplicity: 2(X,TpX; P) = p for a general P € X.
In fact, X NTpX = pP + Q with Q := (ap2 . bP” cp2).
e the dual map is given by
~v: X 5P P=(a:b:c)— [TpX] = (aP : b? : cP),
where P2 D {éx +ny + {2z =0} < (£:1: ) € P2,
e the dual curve X* := ~(X) = {[TpX] € P?}|P € X}.
~ X* — {€p+1 + 77p—l—l + Cp+1 =0} ~ X.

Why?



1 Examples and the definition of a Gauss map

Example 1| ([Wallace (1956)])
X Pt oyPtl 4L 2P =0 CP* (p>0)
e TpX = {a’x+bPy +c?z=0}for P=(a:b:c) € X.
e the contact multiplicity: 2(X,TpX; P) = p for a general P € X.
In fact, X NTpX = pP + Q with Q := (ap2 . bP” cp2).
e the dual map is given by
~v: X 5P P=(a:b:c)— [TpX] = (aP : b? : cP),
where P2 D {éx +ny + {2z =0} < (£:1: ) € P2,
e the dual curve X* := ~(X) = {[TpX] € P?}|P € X}.
~ X* = {51""1 + 'r]p+1 -+ Cp—l—l — O} ~ X.
(ap)'p+1 + (bp)p+1 + (Cp)p+1
— (ap+1)p + (bp+1)p L (Cp+1)p
= (@ P L PP =0((a:b:c) e X). O
~s v = the Frobenius morphism of X (= X** via P? = P?).
e K(X)/K(X™) purely inseparable of degree p.



Example 2| (strange curve)
X:y=a’CA> (p>0)
eTpX ={y—a? =0} for P = (a,a?) € X (- % = pxP~! = 0)

~ all tangent lines are parallel to x-axis, i.e.,

all proj tangent lines > a common pt (1:0:0) € P?,
where A> = {(z :y : 1))} C P2
~> X a “strange” curve.



Example 2| (strange curve)
X:y=a?CA> (p>0)

eTpX ={y—a? =0} for P = (a,a?) € X (- % = pxP~! = 0)
~ all tangent lines are parallel to x-axis, i.e.,

all proj tangent lines > a common pt (1:0:0) € P?,
where A> = {(z :y : 1))} C P2
~> X a “strange” curve.
e the dual map is given by

v: X --» X P =(a,a?) — [TpX]=(0:1: —a?)
~» X* = {€ = 0} a line in P2
~ X** ={(1:0:0)} # X via P? = P2,
e K(X)/K(X™) purely inseparable of degree p.



Example 2| (strange curve)
X:y=a?CA> (p>0)

eTpX ={y—a? =0} for P = (a,a?) € X (- % = pxP~! = 0)
~ all tangent lines are parallel to x-axis, i.e.,

all proj tangent lines > a common pt (1:0:0) € P?,
where A> = {(z :y : 1))} C P2
~> X a “strange” curve.
e the dual map is given by

v:X --» X% P = (a,a?) — [TpX]=(0:1: —aP)
~» X* = {€ = 0} a line in P2
~ X** ={(1:0:0)} # X via P? = P2,
e K(X)/K(X™) purely inseparable of degree p.
e Note that X smooth & p = 2.

Fact I ([Lluis (1962)], [Samuel (1966)])

The only non-linear smooth strange curve X in P¥ is
a conic in p = 2.



Definition | (Gauss map)

For a non-linear algebraic variety X of dim n in P¥,
v: X --» G(n,N);x — T, X,
where
T,X C PY the proj tangent space to X at a smooth pt .

Remark |

N =2,n=1= v = the dual map X --» X*.

Remark | For a generically finite ~,

4 of (contacts of a general) as a set = [K(X) : K(v(X))].

proj tangent space
separable degree of ~

Problem | ([Kleiman (1987)]) rephrased as:

34 7 a smooth proj curve X s.t. ~ has separable degree > 1 or
prove that such an X does not exist.



2 Gauss maps of projective curves

Remark | For a proj curve X,

p = 0 = ~ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and
seem to be caused by the inseparability of Gauss maps ~.

Fact |




2 Gauss maps of projective curves

Remark | For a proj curve X,

p = 0 = ~ is birational, as is classically well known.

Observation

In positive characteristic case
various strange phenomina on tangency have been observed, and
seem to be caused by the inseparability of Gauss maps ~.

Fact | ([K (1989)]) For a proj curve X,

e v is separable = ~ is birational (classically known for X C P?).

e p #+ 2 & o aproj embedding of X s.t. « is birational.
|

biregular embedding into some proj space




Birational embeddings of smooth proj curves (possibly singular case)

Theorem 1| ([Wallace (1956)], [Kleiman (1986)])

V curve X’ CP2inp>0,Vs>1,Vr>1,
3 a curve X C P? s.t.

, K(X): K(X")], = s,
0 =x & {lx) K xn = v

Theorem 2| ([K (1989)])

V inseparable ext K/K' of function fields of dim 1,
3 a proj model X C PV of K s.t.

K/K'= K(X)/K(v(X)).

Remark |

Those curves X in Theorems above are singular in most cases. So,
it would be natural to assume the smoothness in the problem.



Rational curves

Proposition 3| ([K (1986)], [Rathmann (1987)])

V inseparable finite extension K (P')/ K’ of function fields,
3 a smooth rational curve X C P¥ s.t.

K(P)/K’' = K(X)/K(v(X)).

Proof




Rational curves

Proposition 3| ([K (1986)], [Rathmann (1987)])

V inseparable finite extension K (P')/ K’ of function fields,
3 a smooth rational curve X C P¥ s.t.

K(P)/K' = K(X)/K(v(X)).

Proof

o Take f : P! — P! a finite morphism.

— K(P')/K’ a given insep finite extension (~ K’ ~ K (P'))
e embed its graph T'y := {(x, f(x))|z € P'} C P! x P! into P?

so that P! x P! is a quadric surface.
e X := the image of I'; in P°.

~» f is recovered as the Gauss map ~ of X.

.- every fibre P! x {y} is a line in P3,
tangent to X because of the inseparability of f. [



Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K’ of the function field K(X) shows up as
K (~v(X)), the function field of the image of the Gauss map ¢
for a biregular embedding of X into some PM?

Definition | (subfields given by Gauss maps)

For a smooth proj curve X, consider

the Gauss map of

! .
K = {K D) & BN ol i badtii 6ff 54

Remark |

b



Biregular embeddings of smooth proj curves (smooth case)

Question For a smooth proj curve X,

which subfield K’ of the function field K(X) shows up as
K (~v(X)), the function field of the image of the Gauss map ¢
for a biregular embedding of X into some PM?

Definition | (subfields given by Gauss maps)

For a smooth proj curve X, consider

Xt {K('y(X)) C K(X) ﬂythe Gauss map of }

a biregular embedding of X

Remark With this notation, the known results are described as follows:

oep=0= K'={K(X)} for any X.
e K' € K' & K(X)/K’ separable = K’' = K(X).
ep #2 & K(X) € K for any X.

e For X = P!, K'\{K(P))} = {K’' C K(P')|K(P')/K’ finite insep ext}.



Elliptic curves

Theorem 4| ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

K\ (K (X)} = {K(X’) C K(X)

X — X' insep isogeny, and

X «— X'’ separable cyclic

K (X)/K’ insep finite, and }
9

— /
- {K € K(X) K!/K' cyclic of deg # 0 mod p

where

X := Pic’ X the dual of X, and
K the separable closure of K’ in K(X).

Recall that for an elliptic curve X in char p > 0,

i PR
X is said to be ordmafy I " ’

supersingular if » = 0,
where 7 is the p-rank of X defined by

#ker(px: X - Xsx—p-x)=p". (~r=0,1)




Elliptic curves

Theorem 4| ([K (1989)], [K (1991)])

If X is an ordinary elliptic curve, then

K\ (K (X)} = {K(X’) C K(X)

X — X' insep isogeny, and

X «— X'’ separable cyclic

K (X)/K’ insep finite, and }
9

— /
- {K S EY 'Kg/K’ cyclic of deg #Z 0 mod p

where

X := Pic’ X the dual of X, and
K the separable closure of K’ in K(X).

Theorem 5| ([K (1989)])

If X is a supersingular elliptic curve, then

o _ JKX)LK(X)P}, ifp =2,
{K(X), K(X)P}, if p> 2.



Key observation

Theorem 6| ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K (X)/K’, TFAE:
1. K' € K5
2. 3 a vector bundle £ of rank 2 on X’ and
3 an embedding ¢ : X — P(€) s.t.

K(X)/K'= K(p(X))/K(X"),

where X’ a smooth proj model of K’.

X < P(E)
e




Key observation

Theorem 6| ([K (1989)]) X a smooth proj curve.

For an inseparable finite extension K (X)/K’, TFAE:
1. K' € K5

2. 3 a vector bundle £ of rank 2 on X’ and
3 an embedding ¢ : X — P(€) s.t.

K(X)/K'= K(¢(X))/K(X"),  ©~

where X’ a smooth proj model of K’.

X < P(E)
e
X/

Remark | The idea of the proof of (1) < (2):

e embed P(€) into some PM as a scroll, and

o consider ¢ : X < P(E) — PM, the composite morphism.
~» the image of any fibre of P(£) — X' is
a line tangents to +(X) in PM, and
the Gauss map of ¢(X) ~ X — X' defined via .




Curves with higher genus

Theorem 7| ([K (1989)])

X a smooth proj curve of genus g > 2.
F : X — X'’ the Frobenius morphism.

Then TFAE:
1. K(X)? € K’ (i.e., Io : X — PM with ~ ~ the Frob morph);
2. 3 a stable vector bundle £ on X/, and 3 L € Pic X s.t.

* O A 1
where F'& = Px(L).
P (L) the bundle of principal parts of first order of L.



Curves with higher genus

Theorem 7| ([K (1989)])

X a smooth proj curve of genus g > 2.
F : X — X'’ the Frobenius morphism.

Then TFAE:
1. K(X)? € K’ (i.e., Io : X — PM with ~ ~ the Frob morph);
2. 3 a stable vector bundle £ on X/, and 3 L € Pic X s.t.

* O A 1
where F'& = Px(L).
P (L) the bundle of principal parts of first order of L.

Remark | The idea of the proof of (1) < (2):

Apply the Key Observation (Theorem 6) with the stable £ above and
p: X ~P(L) — P(Px(L)) ~P(F*€) — P(&),

which turns out to be an embedding.
3 a natural exact sequence,

0— Q3 ®L—PYH(L) — L— O.




Definition | (Tango-Raynaud curve)

X is a Tango-Raynaud curve
< 3 N € Pic X' s.t.
e
o F*N\ ~ Q%
o F* : HY (X',NV) — HY (X, F*NV) not injective
where F : X — X'’ the Frobenius morphism.

Remark |

1 alg surfaces for which the
A Tango-Raynaud curve ~» Kodaira vanishing theorem does
not hold.

Example



Definition | (Tango-Raynaud curve)

X is a Tango-Raynaud curve
< 3 N € Pic X' s.t.
e
o F*N\ ~ Q%
o F* : HY (X',NV) — HY (X, F*NV) not injective
where F : X — X'’ the Frobenius morphism.

Remark |

1 alg surfaces for which the
A Tango-Raynaud curve ~» Kodaira vanishing theorem does
not hold.

Example | (Theorem 7) For a Tango-Raynaud curve X of g > 2,

0—-Oxr— & —>N —0)«—0+#E¢¢€ker F* C Extk,(N,OX,)
T
satisfies (2) in Theorem 7.

In fact, £ stable, and




Generic injectivity of Gauss map

Theorem 8/ ([K (1989)])

X a proj curve of genus g in PV,
g’ the genus of the normalization of ~(X).
Then:

X smooth or nodal = g = ¢'.

In particular:

g > 2 = ~ birational or purely inseparable, i.e.,
generically injective.



Theorem 9| ([K (1991)], [Kleiman-Piene (1991)])

X a proj curve of genus g in PV N
v := deg Q%{//PN the # of cusps of X (X the normalization of X)
Then:

v < 29 — 2 = ~ generically injective.

Theorem 10| ([Kleiman-Piene (1991)]) W.ith the same notation as above,

s the separable degree of ~.
Then:

25(g —g') < (s — Dv.
In particular, v = 0= g = ¢'.



Brief Summary (proj curves):

e possibly singular case:

V insep finite ext K/ K’ of function fields of dim 1,
3 a proj model X of K s.t.
K/K' = K(X)/K(v(X))

possible to take X to be smooth for rational K.

e smooth case:

3 a biregular embedding s.t.

rational curves} . the Gauss map has

ordinary elliptic curves separable degree > 1, i.e.,
not generically injective.

9(X) = g(v(X)).

. . the Gauss map of
supersingular elliptic curves} I

el TS AU any biregular embedding is

generically injective.




3 Gauss maps of projective varieties

The Gauss map of a proj var X of dim n in P¥ is

¥v: X --»G(n,N);x — T,X.

Fact I

o [Griffiths-Harris (1979)]: p = 0 = a gen fibre of ~ is linear.

e [Zak (19937)]: X smooth = « is finite in arbitrary char.
Hence, X smooth in p = 0 = ~ is birational finite.



Generic injectivity of Gauss map

Theorem 11| ([Kleiman-Piene (1991)])

X a smooth complete intersection of dim n and degree > 2.

Assume:
~(X) smooth.
Then:

cn(X) = cn(v(X))-

Theorem 12| The generic injectivity of the Gauss map holds for

1. [Kleiman-Piene (1991)]: a smooth complete int of dim 2.

2. [K-Noma (1997)]: a smooth proj var with generically ample cotangent

bundle.
3. [Noma (1997)]:
dim > 3.

4. [Noma (1997)]:

tangent bundle.

a smooth weighted complete int of general type with

a smooth proj var of dim 2 or 3 with p-semistable



Gauss map with non-trivial separable degree

Theorem 13| ([Noma (2001)])

1. 34 examples of proj var with an embedding s.t. the Gauss map of
separable degree > 1 as follows:

(a) a smooth var of non-general type (i.e., Kodaira dim « <n ).

(b) a normal var of general type with only isolated sing.
2. 4 an embedding of a proj space P" into some proj space s.t.

the Gauss map has separable degree > 1 and
its image = a normal var of general type.



A new direction: a general fibre of Gauss map

Example | ([Fukasawa (2005)])

X :wy —(2®+9y°+2%2=0C P (p=3)
~> A general fibre of the Gauss map is a conic!

Remark |

This is the first known example of a proj var s.t.
a gen fibre of the Gauss map is non-linear with dim > 0!

Theorem 14| ([Fukasawa (2006)])

For a given proj var Y in P” in characteristic p > 0,
3 a proj var X of dim n s.t.

a general fibre of the Gauss map o Y.



4 Recent results

joint work with S.Fukasawa (3XZ A1) and K.Furukawa (&]I|E5X)
FK:=Fukasawa-Kaji FFK:=Fukasawa-Furukawa-Kaji

Question

Which smooth proj var X has a

{birational
insep Gauss map ~?

biregular} embedding with



Birational embedding case

Theorem 15| ([FK])

Vv alg function field K over kK inp > 0
3 a proj model X C PV of K s.t.

el the Frobenius morphism.
Ir

More precisely,



Birational embedding case

Theorem 15| ([FK])

Vv alg function field K over kK in p > 0
3 a proj model X C PV of K s.t.

~ ~ the Frobenius morphism.
Ir

More precisely,
X a proj var of dim n in p > 0.

1. For an integer r with 0 < r» < n, TFAE:
(a) 3 a birational embedding X --» PV s.t.
~ gen finite & rk~v = 7r;

) (b) (p,7) # (2,1).

Here rk~ := rk(d,vy : to X — ty)G(n,PY)) at a general z € X.



Birational embedding case

Theorem 15| ([FK])

Vv alg function field K over kK in p > 0
3 a proj model X C PV of K s.t.

~ ~ the Frobenius morphism.
Ir

More precisely,
X a proj var of dim n in p > 0.

1. For an integer r with 0 < r» < n, TFAE:
(a) 3 a birational embedding X --» PV s.t.
~ gen finite & rk~v = 7r;
(b) (py7) # (2,1).
2. Moreover for any r satisfying (b) above,
3 a birational embedding X --» PV s.t.
K(X)/K(v(X)) purely insep of degree p"~".

Here rk v := rk(d,v : t X — t,()G(n,PY)) at a general € X.



Corollary

([FK])

Vv alg function field K over kK in p > 0
5 a proj model X C PV of K s.t. X is strange, i.e.,

3P € PN,V smooth z € X,P € T, X



Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

(GMRZ) 3 an embedding X — PM s.t. rk~ = 0.

Remark |

e A variety X satisfies (GMRZ) = p > 0.
. any rational map in p = 0 is separable
~ rk~v = dim v(X) > 0.
e A variety X satisfies (GMRZ) < dv =0
< K(v(X)) € K(X)? in K(X).

Example | (GMRZ)



Biregular embedding case (smooth case)

We introduce an intrinsic property for a proj var X as follows:

(GMRZ) 3 an embedding X — PM s.t. rk~ = 0.

Remark |

e A variety X satisfies (GMRZ) = p > 0.
. any rational map in p = 0 is separable
~ rk~v = dim v(X) > 0.
e A variety X satisfies (GMRZ) < dv =0

& K(v(X)) € K(X)?in K(X).

Example | (GMRZ)

A Fermat hypersurf X of degree = 1 mod p > 0 in PV
satisfies (GMRZ).

- The Gauss map 7, for the embedding X — PV
factors thru the Frobenius morphism.

Moreover we have



Theorem 16| ([FFK])

1. A Segre var [ [, P" (r > 2,n; > 1) satisfies (GMRZ)
Sp=2&n;=1 (\V/’L)

2. A Grassman var G(I,m) (1 <1 < m) satisfies (GMR2Z)
&S l=1orl=m—1, i.e., aproj sp.

3. A smooth quadric hypersurf X in PV (N > 3) satisfies (GMRZ)
& p=2& N =3.

4. A smooth cubic hypersurf X in PV (INV > 3) satisfies (GMRZ)
= p = 2.

The results above follow from



Theorem 17| ([FFK])

X a proj var.
f : P! — X an unramified morphism.
Ny :=ker(f* : f*Q% — Q)" the normal bundle of f.
Assume:
e X smooth along f(P').
o Ni >~ @;s g Op(2)7 (r; 2 0).
Then:
1. X satisfies (GMRZ) = r;,_; =0orr; =0 (Vi > 0).
2. Moreover:
(@)r; >0(2>0) = p=2orp|t+ 1.

(b) 7_1 > 0 = p|deg f*t*Opm(1) — 1 (VX — PM s.t. dy = 0).

Proof




Theorem 17| ([FFK])

X a proj var.
f : P! — X an unramified morphism.
Ny :=ker(f* : f*Q% — Q)" the normal bundle of f.
Assume:
e X smooth along f(P').
o Ni >~ @;s g Op(2)7 (r; 2 0).
Then:
1. X satisfies (GMRZ) = r;,_; =0orr; =0 (Vi > 0).
2. Moreover:
(@)r; >0(2>0) = p=2orp|t+ 1.

(b) r_1 > 0 = p|deg f*1*Opm(1) — 1 (VX — PM s.t. tk~y = 0).

Proof| (Sketch) Assume: rk~v = 0 for ¢ : X — PM, and set £ := +*Opn(1).

= ~vo f: P! - G(n,PM) has rank zero.
é
= the splitting type of f*P3 (L) = 0 mod p.
~ information on p and Ny.
0= NY® f*L — f*Px(L£) — Pu(f*L) — 0 splits, &
the splitting type of Py, (f*L) = ... O



Cubic hypersurfaces

Theorem 18| ([FFK])

A smooth cubic X in PV (IN > 5) satisfies (GMRZ)

& X o~ a Fermat hypersurface in p = 2.




Cubic hypersurfaces

Theorem 18| ([FFK])

A smooth cubic X in PV (IN > 5) satisfies (GMRZ)

& X o~ a Fermat hypersurface in p = 2.

Theorem 19| ([FFK])

A smooth cubic X in PV (IN > 3) in p = 2 satisfies rk~y =0

& X o A Fermat hypersurface.

Remark |

The hard part in our proof of Theorem 17 is to show:
(GMRZ) = rkv, =0

for a smooth cubic X C PV, where we need N > 5.
The cases N = 3,4 are open.



General hypersurfaces

Theorem 20| ([FFK])

A general hypersurf X of degree d in P with 3 < d < 2N — 3
satisfies (GMRZ)
= p=2&d=2N — 3.

Remark |

2N — 3 —d = x(Ng,x) is the “expected dim” of {lines L C X}.

Proof




General hypersurfaces

Theorem 20| ([FFK])

A general hypersurf X of degree d in P with 3 < d < 2N — 3
satisfies (GMRZ)
= p=2&d=2N — 3.

Remark |

2N — 3 —d = x(Ng,x) is the “expected dim” of {lines L C X}.

Proof

e The splitting type of Ny for lines f(P') on X
~p=2&eitherd =2N —3ord= N — 1.

e To rule out the the latter case, assume d = N — 1 and consider
conics f(P') on X instead of lines.

e The point is to show: for a general conic f(P!') C X,
Ny~ Op(1)2 @ 08

~ N = 4.
~» contradiction. [



5 Geometry of rational curves on algebraic varieties

Definition |

e A rational curve (or a morphism) f : P! — X is free

ﬁ f*T'x is generated by its global sections.
e

e A free f is minimal (or standard)
© fTx ~ On(2) @ Opi(1)* 2 O o

Pl '
N
where J
a =deg(—f*Kx) & n = dim X.
Remark | ( characterization of
proj space & quadric hypersurface,
Mori, Cho, Sato, Miyaoka, Araujo,
Shepherd-Barron, Andreatta,
A family of - Wisniewski, Druel, Kovacs, ...
mini free rat curves Fano var,

(Andreatta, Chierici, Occhetta, Araujo, ...)

VMRT (=var of minimal rational tangents),
(Hwang, Kebekus, Mok, Conde, ...)




One of the most fundamental results in p = 0 to guarantee
the existence of minimal free rational curves would be as follows:

Fact | ([Kollar, “Ratoinal Curves on Algebraic Varieties,” (1V.2.10)])

For a smooth proj var X in p = 0,

3 a free rat curve on X = 3 a minimal free rat curve on X.

This is no longer true in positive char!



One of the most fundamental results in p = 0 to guarantee
the existence of minimal free rational curves would be as follows:

Fact | ([Kollar, “Ratoinal Curves on Algebraic Varieties,” (1V.2.10)])

For a smooth proj var X in p = 0,

3 a free rat curve on X = 3 a minimal free rat curve on X.

This is no longer true in positive char!

Theorem 21| ([FFK])

X a Fermat hypersurface of degree d = 1 mod p > 0 in PV.
Then:

N > 2d — 1 = X has a free rational curve but
no minimal free rational curve.

This basically follows from



Theorem 22| ([FFK])

X a proj var of dim n.
f : P! — X a minimal free rational curve s.t.
X smooth along f(P!).
Assume:
X satisfies (GMRZ) with ¢+ : X — PM,
Then, one of the following holds:

1. deg(—f*Kx)=n—+1, d > p & p|d — 1;
2. deg(—f*Kx) =p =2 & 2(d,
where d := deg f*t*Opn (1).

Both cases actually occur!



Example 1

1. A proj space P™ in p > O satisfies (GMRZ), and
a line L C P” is minimal free with
deg(—KIpmlL) =n + 1.

2. A Segre var (PY)™ in p = 2 satisfies (GMRZ), and
a fibre L := P! x {a point} C (P!)" is minimal free with

deg(_K(IPl)n|L) =2=p.



Example 1

1. A proj space P™ in p > O satisfies (GMRZ), and
a line L C P” is minimal free with
deg(—KPn|L) =n + 1.

2. A Segre var (PY)™ in p = 2 satisfies (GMRZ), and
a fibre L := P! x {a point} C (P!)" is minimal free with

deg(_K(Pl)nlL) =2=p.

Example 2
A Fermat cubic surface X C P in p = 2 satisfies (GMRZ).

1. A twisted cubic curve C3 C X is minimal free with
deg(—Kx|c,) =3 =2+ 1.

2. A conic Cy C X is minimal free with
deg(—Kx|c,) = 2 = p.



6 Final comments

Question | For a proj var X in PV in p > 0,

The Gauss map - is separable.

?
— a general fiber of ~ is linear, e.g.,

< ~ is birational for smooth X.



6 Final comments

Question | For a proj var X in PV in p > 0,

?
— a general fiber of ~ is linear, e.g.,

< ~ is birational for smooth X.

[K (2003)]
[F (2006)]

The Gauss map ~ is separable.

[FK (2007)]  if » < 2. [KP (1991)] 7 % ifn > 3. {

X is reflexive.

Definition | n ;= dim X

X is reflexive ] § 5
& C(X) = C(X*) via a natural isom P x PN ~ PN x PV,
e

where (¢, H) < (H,z*")
C(X) := {(z,H)|T,X C H,z € X a smooth pt}~ C PN x PV

the conormal var of X,

X*:=Im(C(X) — PN) the dual var of X.
2nd proj



Thank you for your attention!



