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Q Introduction



Mg: Objectives

@ Classical focus: study one smooth curve X (say over
©

@ Modern Objective: study simultaneously all curves of
given genus g and their families.

@ ‘Suffices’ to study the universal family (stack) Mg,

@ For meaningful global (e.g. enumerative) results,
need to compactify.

@ Good compactification: Mg = parameter space for

stable curves, i.e. nodal curves with finite
automorphism group.

@ Studying Mg is equivalent to simultaneously studying
all families of stable curves.



Methods

@ Classical: For single smooth curve X, use divisors on X
(~, essentially, finite subschemes)

@ Modern: In Mg situation, usual methods nowadays is
GW theory: study moduli spaces Mg(Y) of maps
X — Y forfixed Y (e.g. Y =P").

@ Our purpose here (postmodern ? neoclassical ?):
adapt divisor methods to the setfting of stable curves.

@ NB: On asingular curves, ideals are no longer locally
principal.

@ To get a compact parameter space, must work with
subschemes rather than invertible sheaves.



Smudgy curves

Work with stack of stable smudgy curves

MU — (X, 2) : X nodal of genus g,
z C X arbitrary subscheme of length m,
|Aut(X,2z)| < oo }

NB: X not necessarily stable, but e.g. for each smooth
rational component C C X, Cn (z U sing(X)) has length
> 3.

Smudgy is ‘infrinsic” (easier ?) counterpart to ‘extrinsic’
GW.

To study Mg”], work ‘one family at a time’,

study the associated relative Hilbert scheme.



© The Hilbert scheme



Seftting

Fix a ‘nice’ family of nodal curves:
m:X — B Xy, =7"1(b).

May assume, e.g. X is smooth.
Associate to this the relative Hilbert scheme of degree m:

[m]
XB — B

Paramterizes pairs (b,z) where be B, zcC X, a
length-m subscheme.



Hillb basics

@ Universal property: X,[am] represents the functor

Z — Xs — X
S—< | ! | Z/S finite flat of degree m
S = § —- B

e Universal subscheme: Zy,/XI™ < xI™ x5 X
@ Tautological bundles: given L = vector bundle on X,
get bundles Am(L) of rank m.rk(L) on X[,



Hilo and geometry

Typically, geometric applications of Hilb proceed via the
Am(L).
Example

Let w = wy/p, the relative canonical bundle.
Let E = 7. (w). the Hodge bundle.

Over X,gm], 3 evaluation map (‘Bril-Noether”)

¢m : (1M (E) = Am(w).

For X /B smooth, by Riemann-Roch:

((b,2) : tk(ém(b,2)) < m—r} = {(b,2) : F°(2) > r + 1}.

v

Kempf-Kleiman-Laksov (ca. 1970): use this to prove
existence of special divisors on smooth curves.
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Hilb: structure

We study Hilb via the cycle (or "Hilb-to-Sym’) map
c: xIm — x{m

where Xém) = relative symmetric product.
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Hilb:structure |l
Basic Results

° Xg”] is ‘virtually ssnooth’ i.e. smmooth if X is (whereas
Xém) has non-Q-Gorenstein singularities)
Thus ﬂgn] is a smooth stack.

@ Cmis a small blowup, supported over the cycles with
mulfiplicity > 2 at nodes. In fact, ¢, is the blowup of
the discriminant (Weil) divisor

D™ = locus of nonreduced cycles.
@ Fibre over mo, 0 = fibre node (locally xy =0) is

Cl"u...uCll_,, where
Clm ~ ]Pﬂ :{(Xi - Clym_i), ae (C*}, U{(Xi, er?-&-]—/')7 (XI'-H7 ym—/')}
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Node scrolls defined

Get ‘discriminant polarization” on XE[;m]:

rm = ¢ (07)
Main ‘new’ geometric object in Hilb (rel Sym): node
(poly)scroll, globalizing the C™:
let
04, ...,0, = collection of nodes;
Ny, ..., Ny = multiplicities;
T<jg<nek=1,..r
X% /T = normalization at 4. of subfamily with nodes (4.).
Have node polysroll (scroll, if r = 1)

. . AlMm=3>2n]
FP™(9.:X/B) — (X% 1

Itis a (P')" bundle.
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Node scrolls: structure

Polyscroll is ‘iterated scroll’, so suffices to consider scrolls.
Note X? is endowed with distinguished sections 6, 6y, so T
carries cofangent classes yx = Ox(wxo 1), Yy
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Node scrolls: structure

Theorem
There is a polarized isomorphism

F™N(0) ~ P(O(~DJ(9)) & O(—Df}1(6)))

(polarized: T(M on left —  ©O(1) on right)
where

o7 = ("4 Yo (3o

+ (n—Jj+ 1)[m— nlbx + jlm — n].6y
e [l




e Taufological module and intersection theory
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Tautological classes

@ Significant classes on Hilb:
Chern classes c.(Am(L)), L = vector bundle on X.

@ ‘Meaningful’ numbers are polynomials in those.

@ Objective: compute all polynomials in the Chern
classes.

@ |dea: use induction on m, via the flag Hilbert scheme
ximm=1, parametrizing flags zy,_1 C zm.

17



Splitting principle

Have diagram
X[m,m—l]
Pm./ | pm—}] \op

Theorem (Splitting principle, recursive version)

on X1 we have

Pinc(Am(L)) = (P} 1 Am_1(L)c(P*L(—piT ™ +pr, F(M=1))

18



Discriminant module

This program is realized in 2 main steps.
Step 1 involves the fautological module T (X /B):
TM(X/B)is a H(Sym™(X)) = Sym™(H:(X))-module
(Q-coefficients).
Generators:

@ diagonal cycles I, i = partition of m

@ node scrolls and polyscrolls F (as above)

@ node sections F.INM

+ their “twists’ (by classes from X).
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Discriminant module cont.

Theorem (Tautological module is Discriminant module)

Via intersection product, T™(X/B) admits an explicit
Q[r{m]-module structure.

In particular,

o (M., is an explicit linear combination of diagonals
(standard) and node scrolls (new).

e (FMn ¢ TM(X/B) and is an explicit linear combination
of generators.
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Transfer

Step 2 involves the transfer map
peq  H(XE ) — H ()
via the natural correspondence

H,(Xém,m—]])
q./ NP
H'(Xém_]]) H(Xgﬂ])
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Transfer cont.

Theorem (Transfer)

p«g* is compatible with an explicit map

7m : TM1(X/B) — T™(X/B)

The combination of the Discriminant Module and Transfer
Theorems complete the program of computing all
polynomials in the tautological classes ¢.(Am(L)).
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Q Applications: modular subvarieties
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Modular Subvarieties

Consider canonically defined subvarieties in the smudgy
moduli ﬂ[én] and theirimages V ¢ Mg.

Problem

Compute the fundamental class [V] (or [V, if
necessary), preferably in the Mumford ring (generated by
the kappa classes).

m, .
Mg 4 = closure of locus of smooth curves carrying a g,
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Hyperelliptic locus

We focus on

Subexample (r=1,d = 2)

Pg = closure of locus of smooth hyperelliptic curves.

‘Simple’ yet challenging.
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Brill Noether modified

Starting point: degree-2 Brill-Noether, extended over ﬂgl:
¢ E — Np(w)

Over the interior Mg], the determinantal locus Dy(¢)
coincides with the "2-point hyperelliptic locus’.
Over the boundary, it is very poorly behaved.
The boundaryis § = g + 04+ = dg + > 0;.
i>0
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dg = closure of locus of irreducible curves,
d; = locus of curve of the form C; Uy C_;.
Look first at the easier part 4.

27



0 separating nodes

The curves in §, have a separating node 6.

0 separates X in 2 connected components or ‘sides’
LX(0), rX(6).

X is ‘limit-hyperelliptic” iff

(LX,L0), (rX,RrO) € {(hyperelliptic curve, Weierstrass point)}.
The Brill-Noether map drops rank

@ on the locus subschemes meeting 6;

@ if X or gX is hyperelliptic, on hyperelliptic involution
paqirs

Quantifier problem: change “or’ to ‘and’.

28



Modifying Brill Noether: separated boundary

Locally on ¢y, the Hodge bundle splits:
E=_E®RE

Sections in LE vanish on the opposite side rX, and vice
versa.
There are corank-1 subbundles

LEC c [E, REC C RE

of sections vanishing twice on the opposite side.
Oon XE], have divisors

LD = (LX) gD = (rX)?
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Modifying Brill Noether: separated boundary, ||

Do elementary modification on E, pulled back to XE[f],
with respect to the data

(LE, LD), (rRE,rD)
Then again with respect to
(LE®, LD), (RE®, RD)
Get a new bundle E*, with ‘'modified BN":

¢ T ET — Ap(w).
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Modifying Brill Noether: separated boundary, |l

Can show: off §y, the determinantal locus D, (¢™) is
Dy(¢") = HE? U Ry

Ry = locus of subschemes supported in 6.
Virtual fundamental class [Dy(¢™)]vir cOmputable by

Porteous.
Contribution of Ry computable by Fulton-MacPherson

residual infersection theory.
This yields [HE?] mod dg.

Next step: dg.
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separafing binodes

Problem with g is with the reducible curves (codim 2 locus
in Mg),

i.e. those with a (properly) separating binode 6 = (6, 0>).
These split X in aright and left side (depending on 6:

X:LXUQRX

For now, assume X, grX irreducible.

wx = w; x(0) Uwex(0)
Ex =LE @ RrE
wy Is never very ample, so the Bril-Noether map ¢ or ¢™
always drops rank.
Correct boundary notion: X is ‘limit-hyperelliptic” iff L X, g X
both hyperelliptic with 8 an involution pair.
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Modifying Hilb

Want to modify the Hodge bundle E to trim degeneracy
of ¢.

Problem: Issue occurs in codimension 2 (or more).
Solution: blow up.

Problem: what to blow up ?

Solution: look for loci where ¢ is actually zero on a
subbundle of E like LE, rE.

These are | X1, gX@ XE].

Blow these up, to divisors 1D, gD c X{*t = x{# (a).

XéQ} is the azimuthal Hilbert scheme (depending on 6).
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Modifying Brill Noether

On Xf}, can do elementary modification of E

LE ~ LE(*RD)
RE ~~ RE(—LD)

Get new bundle and map (depending on &):
¢ BT — Ny(w)
Behaviour of this at given subscheme is the max of
w x(20) Uwx, w x(8) Uwex(0), w x Uwx(20)

drops rank on right locus.
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Multiple binodes

Next problem: multiple separating binodes.
ok as long as they are disjoint.
Then, loci o blow up are transverse.
Next situation: when separating binodes bunch up info
polyseparators ©
© = node set where every pair separates.
3 nice way to blowup the loci RX(Q)[B?] for all separating
binodes.
Then modify Hodge correspondingly.
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The ultimate

Ultimately, for the modified Hodge and Brill-Noether ,
ot T EY — Ap(w)
degeneracy locus =

closure of hyperelliptics + | R(6)
0

(union over all separating nodes).
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