Subscheme methods for nodal curves

Ziv Ran

Department of Mathematics
University of California, Riverside
January 2010

Outline

(1) Introduction
(2) The Hilbert scheme
(3) Tautological module and intersection theory

4 Applications: modular subvarieties

Outline

(1) Introduction
(2) The Hilbert scheme
(3) Tautological module and intersection theory

4 Applications: modular subvarieties

\bar{M}_{g} : Objectives

- Classical focus: study one smooth curve X (say over C)
- Modern Objective: study simultaneously all curves of given genus g and their families.
- 'Suffices' to study the universal family (stack) \mathcal{M}_{g}.
- For meaningful global (e.g. enumerative) results, need to compactify.
- Good compactification: $\overline{\mathcal{M}}_{\mathrm{g}}=$ parameter space for stable curves, i.e. nodal curves with finite automorphism group.
- Studying $\overline{\mathcal{M}}_{\mathrm{g}}$ is equivalent to simultaneously studying all families of stable curves.

Methods

- Classical: For single smooth curve X, use divisors on X (\sim, essentially, finite subschemes)
- Modern: In $\overline{\mathcal{M}}_{\mathrm{g}}$ situation, usual methods nowadays is GW theory: study moduli spaces $\mathcal{M g}_{g}(Y)$ of maps $X \rightarrow Y$ for fixed Y (e.g. $Y=\mathbb{P}^{n}$).
- Our purpose here (postmodern ? neoclassical ?): adapt divisor methods to the setting of stable curves.
- NB: On a singular curves, ideals are no longer locally principal.
- To get a compact parameter space, must work with subschemes rather than invertible sheaves.

Smudgy curves

Work with stack of stable smudgy curves

$$
\begin{aligned}
\mathcal{M}_{g}^{[m]}=\{ & (X, z): X \text { nodal of genus } g, \\
& z \subset X \text { arbitrary subscheme of length } m, \\
& |\operatorname{Aut}(X, z)|<\infty\}
\end{aligned}
$$

NB: X not necessarily stable, but e.g. for each smooth rational component $C \subset X, C \cap(z \cup \operatorname{sing}(X))$ has length ≥ 3.
Smudgy is 'intrinsic' (easier ?) counterpart to 'extrinsic' GW.
To study $\mathcal{M}_{g}^{[m]}$, work 'one family at a time', study the associated relative Hilbert scheme.

Outline

(1) Introduction

(2) The Hilbert scheme

3 Tautological module and intersection theory

4 Applications: modular subvarieties

7

Setting

Fix a 'nice' family of nodal curves:

$$
\pi: X \rightarrow B, X_{b}=\pi^{-1}(b)
$$

May assume, e.g. X is smooth.
Associate to this the relative Hilbert scheme of degree m :

$$
X_{B}^{[m]} \rightarrow B
$$

Paramterizes pairs (b, z) where $b \in B, \quad z \subset X_{b} \quad a$ length-m subscheme.

Hillo basics

- Universal property: $X_{B}^{[m]}$ represents the functor

$$
S \mapsto\left\{\begin{array}{lllll}
Z & \hookrightarrow & X_{S} & \rightarrow & X \\
\downarrow & & \downarrow & & \downarrow \\
S & & S & \rightarrow & B
\end{array}\right.
$$

- Universal subscheme: $Z_{m} / X_{B}^{[m]} \subset X_{B}^{[m]} \times_{B} X$.
- Tautological bundles: given $L=$ vector bundle on X, get bundles $\Lambda_{m}(L)$ of rank m.rk (L) on $X_{B}^{[m]}$.

Hill and geometry

Typically, geometric applications of Hilb proceed via the $\wedge_{m}(L)$.

Example

Let $\omega=\omega_{X / B}$, the relative canonical bundle.
Let $\mathbb{E}=\pi_{*}(\omega)$, the Hodge bundle.
Over $X_{B}^{[m]}, \exists$ evaluation map ('Brill-Noether')

$$
\phi_{m}:\left(\pi^{[m]}\right)^{*}(\mathbb{E}) \rightarrow \Lambda_{m}(\omega) .
$$

For X / B smooth, by Riemann-Roch:

$$
\left\{(b, z): \operatorname{rk}\left(\phi_{m}(b, z)\right) \leq m-r\right\}=\left\{(b, z): h^{0}(z) \geq r+1\right\} .
$$

Kempf-Kleiman-Laksov (ca. 1970): use this to prove existence of special divisors on smooth curves.

Hillo: structure

We study Hilb via the cycle (or 'Hilb-to-Sym') map

$$
c: X_{B}^{[m]} \rightarrow X_{B}^{(m)}
$$

where $X_{B}^{(m)}=$ relative symmetric product.

Hilb:structure II

Basic Results

- $X_{B}^{[m]}$ is 'virtually smooth' i.e. smooth if X is (whereas
$X_{B}^{(m)}$ has non- \mathbb{Q}-Gorenstein singularities)
Thus $\overline{\mathcal{M}}_{g}^{[m]}$ is a smooth stack.
- c_{m} is a small blowup, supported over the cycles with multiplicity ≥ 2 at nodes. In fact, c_{m} is the blowup of the discriminant (Weil) divisor

$$
D^{m}=\text { locus of nonreduced cycles. }
$$

- Fibre over $m \theta, \theta=$ fibre node (locally $x y=0$) is

$$
\begin{gathered}
C_{1}^{m} \cup \ldots \cup C_{m-1}^{m}, \text { where } \\
C_{i}^{m} \simeq \mathbb{P}^{l}=\left\{\left(x^{i}-a y^{m-i}\right), a \in \mathbb{C}^{*}\right\}, \cup\left\{\left(x^{i}, y^{m+1-i}\right),\left(x^{i+1}, y^{m-i}\right)\right\}
\end{gathered}
$$

Node scrolls defined

Get 'discriminant polarization' on $X_{B}^{[m]}$:

$$
\Gamma^{(m)}=\frac{1}{2} c_{m}^{-1}\left(D^{m}\right)
$$

Main 'new' geometric object in Hilb (rel Sym): node (poly)scroll, globalizing the C_{i}^{m} : let
$\theta_{1}, \ldots, \theta_{r}=$ collection of nodes;
$n_{1}, \ldots, n_{r}=$ multiplicities;
$1 \leq j_{k}<n_{k}, k=1, \ldots, r$
$X^{\theta \cdot / T}=$ normalization at θ. of subfamily with nodes (θ.). Have node polysroll (scroll, if $r=1$)

$$
F_{j .}^{n . m}(\theta . ; X / B) \rightarrow\left(X^{\theta \cdot}\right)_{T}^{\left[m-\sum n_{j}\right]}
$$

It is a $\left(\mathbb{P}^{l}\right)^{r}$ bundle.

Node scrolls: structure

Polyscroll is 'iterated scroll', so suffices to consider scrolls. Note X_{T}^{θ} is endowed with distinguished sections θ_{X}, θ_{y}, so T carries cotangent classes $\psi_{x}=\theta_{x}^{*}\left(\omega_{X^{\theta} / T}\right), \psi_{y}$.

Node scrolls: structure

Theorem

There is a polarized isomorphism

$$
F_{j}^{m, n}(\theta) \simeq \mathbb{P}\left(\mathcal{O}\left(-D_{j}^{n}(\theta)\right) \oplus \mathcal{O}\left(-D_{j+1}^{n}(\theta)\right)\right)
$$

(polarized: $\Gamma^{(m)}$ on left $\leftrightarrow \mathcal{O}(1)$ on right) where

$$
\begin{aligned}
D_{j}^{n}(\theta)= & -\binom{n-j+1}{2} \psi_{x}-\binom{j}{2} \psi_{y} \\
& +(n-j+1)[m-n]_{*} \theta_{x}+j[m-n]_{*} \theta_{y} \\
& +\Gamma^{[m-n]}
\end{aligned}
$$

Outline

(1) Introduction
(2) The Hilbert scheme
(3) Tautological module and intersection theory

4 Applications: modular subvarieties

16

Tautological classes

- Significant classes on Hilb: Chern classes $c .\left(\Lambda_{m}(L)\right), L=$ vector bundle on X.
- 'Meaningful' numbers are polynomials in those.
- Objective: compute all polynomials in the Chern classes.
- Idea: use induction on m, via the flag Hilbert scheme $X_{B}^{[m, m-1]}$, parametrizing flags $z_{m-1} \subset z_{m}$.

Splitting principle

Have diagram

Theorem (Splitting principle, recursive version)
On $X_{B}^{[m, m-1]}$, we have
$p_{m}^{*} C\left(\Lambda_{m}(L)\right)=C\left(p_{m-1}^{*} \Lambda_{m-1}(L)\right) C\left(p^{*} L\left(-p_{m}^{*} \Gamma^{(m)}+p_{m-1}^{*} \Gamma^{(m-1)}\right)\right)$

Discriminant module

This program is realized in 2 main steps. Step 1 involves the tautological module $T^{m}(X / B)$: $T^{m}(X / B)$ is a $H \cdot\left(\operatorname{Sym}^{m}(X)\right)=\operatorname{Sym}^{m}(H \cdot(X))$-module
(\mathbb{Q}-coefficients).
Generators:

- diagonal cycles $\Gamma_{\mu}, \mu=$ partition of m
- node scrolls and polyscrolls F (as above)
- node sections F. $\Gamma^{(m)}$
+ their 'twists' (by classes from X).

Discriminant module cont.

Theorem (Tautological module is Discriminant module)

Via intersection product, $T^{m}(X / B)$ admits an explicit $\mathbb{Q}\left[\Gamma^{(m)}\right]$-module structure.

In particular,

- $\Gamma^{(m)} . \Gamma_{\mu}$ is an explicit linear combination of diagonals (standard) and node scrolls (new).
- $\left(\Gamma^{(m)}\right)^{n} \in T^{m}(X / B)$ and is an explicit linear combination of generators.

Transfer

Step 2 involves the transfer map

$$
p_{*} q^{*}: H \cdot\left(X_{B}^{[m-1]}\right) \rightarrow H \cdot\left(X_{B}^{[m]}\right)
$$

via the natural correspondence

21

Transfer cont.

Theorem (Transfer)

$p_{*} q^{*}$ is compatible with an explicit map

$$
\tau_{m}: T^{m-1}(X / B) \rightarrow T^{m}(X / B)
$$

The combination of the Discriminant Module and Transfer Theorems complete the program of computing all polynomials in the tautological classes $c .\left(\Lambda_{m}(L)\right)$.

Outline

(1) Introduction
(2) The Hilbert scheme
(3) Tautological module and intersection theory

4 Applications: modular subvarieties

23

Modular Subvarieties

Consider canonically defined subvarieties in the smudgy moduli $\overline{\mathcal{M}}_{g}^{[m]}$ and their images $V \subset \overline{\mathcal{M}}_{\mathrm{g}}$.

Problem

Compute the fundamental class [V] (or [V] $]_{\text {vir }}$, if necessary), preferably in the Mumford ring (generated by the kappa classes).

Example

$\overline{\mathcal{M}}_{g, d}^{r}=$ closure of locus of smooth curves carrying a g_{d}^{r}

Hyperelliptic locus

We focus on
Subexample ($r=1, d=2$)
$\bar{H}_{g}=$ closure of locus of smooth hyperelliptic curves.
'Simple' yet challenging.

Brill Noether modified

Starting point: degree-2 Brill-Noether, extended over $\overline{\mathcal{M}}_{g}^{[2]}$:

$$
\phi: \mathbb{E} \rightarrow \Lambda_{2}(\omega)
$$

Over the interior $\mathcal{M}_{g}^{[2]}$, the determinantal locus $D_{2}(\phi)$ coincides with the '2-point hyperelliptic locus'.
Over the boundary, it is very poorly behaved.
The boundary is $\delta=\delta_{0}+\delta_{+}=\delta_{0}+\sum_{i>0} \delta_{i}$.

Boundary

$\delta_{0}=$ closure of locus of irreducible curves, $\delta_{i}=$ locus of curve of the form $C_{i} \cup_{\theta} C_{\mathfrak{g}-i}$. Look first at the easier part δ_{+}.

$\delta_{+}:$separating nodes

The curves in δ_{+}have a separating node θ.
θ separates X in 2 connected components or 'sides'
${ }_{\mathrm{L}} X(\theta),{ }_{\mathrm{R}} X(\theta)$.
X is 'limit-hyperelliptic' iff
$\left({ }_{\mathrm{L}} X,{ }_{\mathrm{L}} \theta\right),\left({ }_{\mathrm{R}} X,{ }_{\mathrm{R}} \theta\right) \in\{($ hyperelliptic curve, Weierstrass point $)\}$.
The Brill-Noether map drops rank

- on the locus subschemes meeting θ;
- if ${ }_{L} X$ or ${ }_{R} X$ is hyperelliptic, on hyperelliptic involution pairs
Quantifier problem: change 'or' to 'and'.

Modifying Brill Noether: separated boundary

Locally on δ_{0}, the Hodge bundle splits:

$$
\mathbb{E}={ }_{\mathrm{L}} \mathbb{E} \oplus_{\mathrm{R}} \mathbb{E}
$$

Sections in ${ }_{L} \mathbb{E}$ vanish on the opposite side ${ }_{R} X$, and vice versa.
There are corank-1 subbundles

$$
\mathrm{L}^{0} \subset_{\mathrm{L}} \mathbb{E}, \quad \mathrm{R}^{0} \subset_{\mathrm{R}} \mathbb{E}
$$

of sections vanishing twice on the opposite side.
On $X_{B}^{[2]}$, have divisors

$$
{ }_{\mathrm{L}} D=\left({ }_{\mathrm{L}} X\right)_{B}^{[2]},{ }_{\mathrm{R}} D=\left({ }_{\mathrm{R}} X\right)_{B}^{[2]}
$$

Modifying Brill Noether: separated boundary, II

Do elementary modification on \mathbb{E}, pulled back to $X_{B}^{[2]}$, with respect to the data

$$
\left({ }_{\mathrm{L}} \mathbb{E},{ }_{\mathrm{L}} D\right),\left({ }_{\mathrm{R}} \mathbb{E},{ }_{\mathrm{R}} D\right)
$$

Then again with respect to

$$
\left({ }_{\mathrm{L}} \mathbb{E}^{0},{ }_{\mathrm{L}} D\right),\left({ }_{\mathrm{R}} \mathbb{E}^{0},{ }_{\mathrm{R}} D\right)
$$

Get a new bundle \mathbb{E}^{+}, with 'modified BN^{\prime} :

$$
\phi^{+}: \mathbb{E}^{+} \rightarrow \Lambda_{2}(\omega) .
$$

Modifying Brill Noether: separated boundary, III

Can show: off δ_{0}, the determinantal locus $D_{2}\left(\phi^{+}\right)$is

$$
D_{2}\left(\phi^{+}\right)=\overline{\mathcal{H} \mathcal{E}^{2}} \cup R_{\theta}
$$

$R_{\theta}=$ locus of subschemes supported in θ.
Virtual fundamental class $\left[D_{2}\left(\phi^{+}\right)\right]_{\text {vir }}$ computable by
Porteous.
Contribution of R_{θ} computable by Fulton-MacPherson residual intersection theory.
This yields $\left[\overline{\mathcal{H E}^{2}}\right] \bmod \delta_{0}$.

Next step: δ_{0}.

separating binodes

Problem with δ_{0} is with the reducible curves (codim 2 locus in $\overline{\mathcal{M}}_{\mathrm{g}}$),
i.e. those with a (properly) separating binode $\underline{\theta}=\left(\theta_{1}, \theta_{2}\right)$.

These split X in a right and left side (depending on $\underline{\theta}$:

$$
X={ }_{\mathrm{L}} X \cup \cup_{\underline{\theta}} X
$$

For now, assume ${ }_{L} X,{ }_{\mathrm{R}} X$ irreducible.

$$
\begin{gathered}
\omega_{X}=\omega_{\mathrm{L}} X(\underline{\theta}) \cup \omega_{\mathrm{R}} x(\underline{\theta}) \\
\mathbb{E}_{X}={ }_{\mathrm{L}} \mathbb{E} \oplus_{\mathrm{R}} \mathbb{E}
\end{gathered}
$$

ω_{X} is never very ample, so the Brill-Noether map ϕ or ϕ^{+} always drops rank.
Correct boundary notion: X is 'limit-hyperelliptic' iff ${ }_{\mathrm{L}} X,{ }_{\mathrm{R}} X$ both hyperelliptic with $\underline{\theta}$ an involution pair.

Modifying Hillb

Want to modify the Hodge bundle \mathbb{E} to trim degeneracy of ϕ.
Problem: Issue occurs in codimension 2 (or more).
Solution: blow up.
Problem: what to blow up ?
Solution: look for loci where ϕ is actually zero on a subbundle of \mathbb{E} like ${ }_{L} \mathbb{E},{ }_{\mathrm{R}} \mathbb{E}$.
These are ${ }_{L} X^{[2]},{ }_{R} X^{[2]} \subset X_{B}^{[2]}$.
Blow these up, to divisors ${ }_{L} D,{ }_{\mathrm{R}} D \subset X_{B}^{\{2\}}=X_{B}^{\{2\}}(\underline{\theta})$.
$X_{B}^{\{2\}}$ is the azimuthal Hilbert scheme (depending on $\underline{\theta}$).

Modifying Brill Noether

On $X_{B}^{\{2\}}$, can do elementary modification of \mathbb{E}

$$
\begin{aligned}
& L_{\mathrm{E}} \rightsquigarrow_{\mathrm{L}} \mathbb{E}\left(-{ }_{\mathrm{R}} D\right) \\
& \mathrm{R} \mathbb{E} \rightsquigarrow{ }_{\mathrm{R}} \mathbb{E}\left(-{ }_{\mathrm{L}} D\right)
\end{aligned}
$$

Get new bundle and map (depending on $\underline{\theta}$):

$$
\phi^{+}: \mathbb{E}^{+} \rightarrow \Lambda_{2}(\omega)
$$

Behaviour of this at given subscheme is the max of

$$
\omega_{\mathrm{L}} x(2 \underline{\theta}) \cup \omega_{\mathrm{R}} x, \omega_{\mathrm{L}} x(\underline{\theta}) \cup \omega_{\mathrm{R}} x(\underline{\theta}), \omega_{\mathrm{L}} x \cup \omega_{\mathrm{R}} x(2 \underline{\theta})
$$

\therefore drops rank on right locus.

Multiple binodes

Next problem: multiple separating binodes.
ok as long as they are disjoint.
Then, loci to blow up are transverse.
Next situation: when separating binodes bunch up into polyseparators Θ
$\Theta=$ node set where every pair separates.
\exists nice way to blowup the $\operatorname{loci}_{R} X(\underline{\theta})_{B}^{[2]}$ for all separating binodes.
Then modify Hodge correspondingly.

The ultimate

Ultimately, for the modified Hodge and Brill-Noether,

$$
\phi^{+}: \mathbb{E}^{+} \rightarrow \Lambda_{2}(\omega)
$$

degeneracy locus =

$$
\text { closure of hyperelliptics }+\bigcup_{\theta} R(\theta)
$$

(union over all separating nodes).

