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Abstract Most generic and memory-efficient algorithms for solving the discrete logarithm
problem construct a certain random graph consisting of group element nodes and return the
solution when a collision is found among the graph nodes.

In this work, we develop a technique for traveling through the random graph without
fully computing each node and also provide an extension to the distinguished point colli-
sion detection method that is suitable for this new situation. Concrete constructions of this
technique for multiplicative subgroups of the finite fields are given. Our implementations
confirm that the proposed technique provides practical speedup over existing algorithms.

Keywords discrete logarithm problem · Pollard’s rho · r-adding walk · distinguished point ·
finite field

1 Introduction

Let G be a finite cyclic group of order q generated by an element g. Given any h ∈ G, we
know that it is possible to write h = gx. The smallest such non-negative integer x is said to be
the discrete logarithm of h to the base g and is denoted by logg h. Ever since the introduction
of public key cryptography [6], the discrete logarithm problem (DLP) over various construc-
tions of the cyclic group has been one of the most important mathematical primitives in the
subject area. The security of various current cryptosystems, such as the Diffie-Hellman key
agreement protocol [6], the ElGamal cryptosystem [8], and some signature schemes [8, 18],
rely on the hardness of DLPs.

The first non-trivial algorithm for solving the DLP was the baby-step giant-step (BSGS)
method [29]. The BSGS algorithm requires O(

√
q) operations and O(

√
q) storage when
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applied to a cyclic group of order q. Pollard [22, 23] proposed two probabilistic algorithms
called Pollard’s rho method and the kangaroo method. Pollard’s rho method has the same
time complexity as BSGS but requires almost no storage. The kangaroo method is well
suited for the case where logg h is known to belong to an interval of length smaller than the
group size. Its complexity in solving DLPs is O(

√
ω) when the interval length is ω .

If the considered group has a composite order, the Pohlig-Hellman algorithm [21] can
be used to reduce the initial DLP to DLPs in its prime order subgroups. Hence, it is sufficient
to consider DLPs in prime order groups. The index calculus method [1] is a DLP solving
algorithm that works on multiplicative subgroups of the finite field Fpn . The complexity of
this algorithm is sub-exponential in the size of the base field, and the algorithm delivers
the same performance on any subgroup of a fixed F×pn . Nevertheless, in many situations, in-
cluding the multiplicative subgroups of sufficiently large finite fields, variants of Pollard’s
rho method are the best known algorithms for solving the DLPs. Unlike the index calculus
method, these algorithms are generic in the sense that they are not specific to the presenta-
tion of the group. These algorithms can be applied even to generic groups, where the group
operation and equality testing are given as black-box algorithms. Other developments con-
cerning DLP solving include parallelization [20] of the various algorithms and Pollard’s rho
variants specific to certain groups with fast endomorphisms [7, 10, 12, 34].

Pollard’s rho algorithm and its variants generate a sequence of elements from the group,
referred to as the random walk. More precisely, a specific function F : G→G is fixed and the
random walk is generated by iteratively applying F , starting from a random group element.
The function F is constructed in such a way that the solution to the DLP is obtained when
the random walk revisits an element it has already passed over. Each variant of Pollard’s rho
algorithm provides a means of detecting this collision within the walk.

A popular design for the iteration function is the r-adding, in which each iteration is
a product by one of r-many preset elements of the group. Let us focus our attention on the
DLP solving algorithm that combines the r-adding style of generating the random walk with
the distinguished point collision detection method. This combination may be considered
the most practical among generic DLP solving algorithms. We bring two properties of this
combination to attention. The first is that the choice of which element is to be multiplied at
each iteration of the r-adding walk is essentially determined from a very small amount of
information concerning the current point. The second is that the distinguished point method
processes only a very small fraction of the random walk nodes in full.

In this paper, we present tag tracing, a technique that takes advantage of the above
mentioned two properties. Although the random walk is iterative in nature, we provide a
framework within which one may quickly pass through a certain length of iterations with-
out fully computing each node on the walk. If the r-adding walk iteration function can be
designed to meet certain criteria, one can use a pre-computed table and trace through each
iteration of the random walk after computing only the aforementioned very small amount
of information that determines the subsequent step. We also provide an extension to the
distinguished point method that is suitable as a collision detection method for the modified
r-adding walk. Tag tracing fully retains the parallelizability of the original algorithm.

Concrete constructions of tag tracing for subgroups of the finite fields are provided.
Both the prime fields and the finite fields of large extension degrees are considered. Under
a fixed encoding for the group, the core of these constructions amounts to being capable
of computing just a few bits of the product of two group elements, where one element is
random and the other is fixed, with a lesser effort than is required for computing the full
product. These partial product computation methods may be seen as another contribution of
this work.
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In the case of multiplicative subgroups of F×pn , as n is increased and the prime p is kept
fixed, the tag tracing construction allows each iteration of the r-adding walk to be computed
with time complexity that is asymptotically linear in n. For subgroups of fixed size, this
implies that the DLP solving time is linear in n, or the bit size of the base field. In the case of
multiplicative subgroups of the prime field Fp, the time complexity achieved by tag tracing
depends on the method of modulo product computation used. When the classical method
of product computation is used, tag tracing iterations run at an asymptotic time complexity
of O(log p log log p) as p is changed, and if the Fast Fourier Transformation method is used
for product computations, the complexity becomes O(log p log loglog p).

In practice, our rudimentary implementation runs more than 10, 20, and 30 times faster
than the original algorithms in solving DLPs on subgroups of F×p , when the bit length of p
is 1024, 2048, and 3072, respectively. Our implementation on subgroups of F×2n performs
approximately 13, 17, and 21 times faster when n is 1024, 2048, and 3072, respectively.
Tag tracing slightly increases the total number of iterations, but the speedups are achieved
by computing each iteration faster with the help of large pre-computed tables. The stated
speedups do not include the time spent on table pre-computation, however this time is neg-
ligible compared to the online DLP solving time when working with large groups.

Organization. The rest of this paper is organized as follows. Section 2 includes a review of
Pollard’s rho algorithm and its variants. In Section 3, we present an extension of the distin-
guished point collision detection method. The main contribution of this paper, tag tracing,
is presented in Section 4. The subsequent two sections show concrete constructions of tag
tracing on multiplicative subgroups of the finite fields. Section 5 discusses the case of finite
fields with large extension degrees, and Section 6 discusses the prime field case. Both of
these sections also include implementation results. The final section summarizes the results
of the present study and discusses future research.

2 Pollard’s Rho Algorithm

There are many variants of Pollard’s rho algorithm. In this section, we briefly review some
of these algorithms that are used to solve DLPs. Readers should consult the original cited
papers for further details. Throughout this paper G = ⟨g⟩ denotes a finite cyclic group of
prime order q generated by an element g, and the notation h∈G is used for the DLP target. In
other words, we are always looking for the value logg h. Hereinafter, Pollard’s rho algorithm
is referred to simply as the rho algorithm.

2.1 Overview

Each variant of the rho algorithm generates a sequence of elements belonging to the group
under consideration and produces the solution to the DLP when a collision among these
elements is found.

Given any function F : G→ G and an initial element g0 ∈ G, we can iteratively define

gi+1 = F(gi) (i≥ 0)

to create a sequence (gi)i≥0. Since G is a finite set, the resulting sequence must eventually
return to an element that has previously been visited, after which the sequence repeats the
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path already traveled. The smallest integers µ ≥ 0 and λ ≥ 1 that satisfy gλ+µ = gµ are
said to be the pre-period and period, respectively, of the random walk (gi)i≥0. When the
function F is chosen uniformly at random from the set of all functions operating on G, the
rho length λ +µ is expected [9, 16] to be

√ π
2 q≈ 1.253

√
q.

Let us say that the iteration function F : G→ G is exponent traceable with respect to g
and h, if it can be expressed in the form

F(gahb) = gFg(a,b)hFh(a,b)

for some functions Fg and Fh of the input exponents that are easy to compute. In other words,
if one knows how to express the input to F as a power of g and h, we require the same to be
possible for its output. This does not necessarily imply that F can only be computed through
the exponent information. For example, if F is the squaring operator on G, we can take
Fg(a,b) = 2a and Fh(a,b) = 2b, but F can be computed without access to the gahb form of
the input.

Each variant of the rho algorithm employs an iteration function that is exponent trace-
able. Thus, starting from g0 = ga0 hb0 , with randomly chosen, but known, (a0,b0), one can
always keep track of the exponents (ai,bi) that satisfy gi = gai hbi . The cost of updating the
exponents is usually much smaller than the cost of one function iteration and is disregarded
during complexity analysis.

When a collision gi = g j within the random walk is detected for some i ̸= j, setting
x = logg h, we know gai(gx)bi = ga j (gx)b j , so that we can use

ai + x bi ≡ a j + x b j (mod q)

to solve for x. This will fail to bring out x when bi ≡ b j (mod q), but such an event is rare
for any large q and reasonable F .

Below, we describe the exponent traceable iteration functions that are used in variants of
the rho algorithm and we also provide a number of collision detection mechanisms. These
two components of DLP solving algorithms are rather independent, and any combination of
the two parts that are given in this section can be used.

2.2 Iteration Functions

An iteration function is considered to be well designed if it is easy to compute and the
number of iterations it takes to reach a collision is close to

√ π
2 q, the value expected of a

random function.

Pollard. Pollard [22] originally targeted his algorithm to solve DLPs on F×p , but his iteration
function, which we denote by FP : G→ G, can be modified for use on any cyclic group. Let
G = G0∪G1∪G2 be a partition of G into three nearly equal sized subsets. It is assumed that
the encoding for G and the partition are compatible, in the sense that it is easy to identify
which subset Gi a given group element belongs to. With the partition fixed, the iteration
function is defined as follows.

FP(y) =


gy, if y ∈ G0,
y2, if y ∈ G1,
hy, if y ∈ G2.
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It is clear that this function is exponent traceable. For example, when gahb ∈ G0, we have
(FP)g(a,b) = a+1 and (FP)h(a,b) = b. Although the expected rho length of FP has recently
been shown [13] to be O(

√
q), tests indicate that it takes more than

√ π
2 q iterations for FP

to reach a collision [31, 32], so that FP is not an optimal iteration function.

Adding walks. Let 3 ≤ r ≤ 100 be a small positive integer. As before, we fix a partition
G = G0∪·· ·∪Gr−1 of G into r-many subsets of roughly the same size. The index function
s : G→{0,1, . . . ,r−1} is defined by setting s(y) = i for y∈Gi and is assumed to be easy to
compute. For each i = 0, . . . ,r−1, randomly choose integers αi,βi ∈ Z/qZ that are not both
zero and set the multipliers mi to gαi hβi . Then the r-adding iteration function Fr : G→ G is
given by

Fr(y) = yms(y).

That is, one of the r-many randomly chosen, but pre-determined, elements mi ∈ G is multi-
plied to the input, depending on which subset Gi it belongs to, so that the r-adding walk is
given by

gi+1 = gims(gi).

This function is clearly exponent traceable, with the exponent functions Fg and Fh being
additions by αi and βi, respectively. In this paper, the term adding walk is used, unless
reference to the parameter r is required.

This method was introduced in [26] and the work [25] provides some support to the
claim that a collision is expected after O(

√
q) iterations when r ≥ 8. Testing [32] done on

prime order elliptic curve groups show that 20-adding walks perform very close to a random
function.

2.3 Collision Detection

The most straightforward approach to finding a collision within the random walk is to col-
lect every point gi that has been generated, in a sorted list until a collision is found. This
method, however, provides no benefit over the BSGS algorithm, which is a deterministic
DLP solving algorithm that requires O(

√
q) group operations and O(

√
q) storage. Thus,

collision detection mechanisms with smaller storage requirements are desirable. In achiev-
ing this, most methods require additional function iterations to be computed even after the
actual collision has occurred. It would be preferable for a collision detection mechanism to
keep this additional cost at a minimum.

Below, we describe the three most cited collision detection methods. Though it would
be difficult to devise a measure that would give a fair comparison of these methods, the
distinguished point method, which will be described last, is usually regarded as being the
most practical, and all of our further discussions will be based on the distinguished point
method.

There are other methods that we do not explain in detail. The method in [28] proposes the
storage of points that are equidistance from one another with occasional search of an entire
random walk interval, whose length equals the mentioned distance, for collisions with the
stored points. The distance between stored points is adaptively changed so that the storage
size stays within a given bound. The proposal given by [17] is to maintain a stack of walk
points in increasing order. All points in the stack that are smaller than the newest walk point
are removed before the latter is added to the top of the stack. A collision is detected when
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the walk visits the smallest point on the cycle for the second time. This process is combined
with a partitioning technique for performance enhancement.

Floyd. The idea given in [14] is to wait for a collision of the type gi = g2i to occur. Three
applications of the iteration function are needed at each iteration to update the two current
states gi and g2i to gi+1 and g2(i+1), respectively. This method detects a collision within λ +µ
iterations, or equivalently, 3(λ + µ) applications of the iteration function. Therefore, with
a good iteration function, approximately 3

√ π
2 q function applications are needed before a

collision is detected, and the storage requirement is negligible.

Brent. We explain a method of Teske [31], which is an optimized version of the method
proposed in [3, 26]. The eight most recent gk, for which the index k are powers of 3, are
kept in storage. After each application of the iteration function, the current gi is compared
with the eight stored entries, and gi replaces the oldest of the eight entries if the index i has
reached a new power of 3. This approach terminates with a collision between the current
gi and some gk from the storage in 1.25 ·max(λ/2,µ)+λ iterations. This is approximately
1.229

√ π
2 q iteration when the iteration function is the random function.

Distinguished points. This approach was originally proposed for use with the time-memory
tradeoff techniques and its use in DLP solving was suggested in [24]. A distinguished point
is any element of G that satisfies a certain preset condition. This condition is usually set in
such a way that it is easy to check. For example, under a fixed encoding for G, one may set
distinguished points to be those elements of G with a certain number of most significant bits
equal to zero.

We start with an empty table of distinguished points and the random walk is traveled
until the current element gi is found to be a distinguished point. Whenever a distinguished
point is reached through the iteration, the element is searched for in the table of distinguished
points and is added to the table if it is not found. The table is always kept in a sorted state,
or a hash table technique is employed, in order to make later searches easy.

If 1
∆ is the probability for a random element of G to be a distinguished point, then the dis-

tinguished point collision detection method will consume, on average, ∆ extra applications
of the iteration function after the initial collision within the walk, before terminating with a
collision among the distinguished points. Thus, for a random iteration function, one would
expect to compute

√ π
2 q+∆ applications of the iteration function until collision detection.

To minimize the ∆ extra iterations, one would like to define distinguished points in such
a way that they occur frequently. This desire should be balanced with the need to keep the
table of distinguished points within a manageable size. In addition to causing only a small
amount of iteration overhead, the distinguished point method has the advantage of allowing
parallelization [20] that achieves speedups that are linear in the number processors.

3 Extension to the Distinguished Point Collision Detection Method

There are two aspects of the distinguished point method that give it an advantage over other
collision detection methods. The first is that only a small fraction of the points on the random
walk needs to be processed for collision detection. The second is that the points that do go
through the processing are already similar to each other. One may view these properties as
having been obtained by sieving out the group elements with a test that is extremely easy to
perform.
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In the sections below, we encounter random walks (gi)i≥0 for which only partial infor-
mation about each gi is available. The accessible information is typically of only a few bits,
so that it is not possible to devise a test that sieves out a large fraction of the random walk
points. We now present an adaptation of the distinguished point method that is suitable for
this situation. While it is not possible to check for collisions reliably without full access to
each gi, we shall show how the information present in the walk, rather than each point, can
be used to construct a meaningful sieve.

3.1 Distinguished Path Segment

Let us be given a random walk (gi)i≥0, constructed with a certain iteration function. Suppose
that it is possible to check each gi for a property that is satisfied with probability 1

r , for some
small r. We will not be concerned with how to compute the walk and will completely ignore
any information about gi that comes from its encoding. The typical situation we have in
mind is the r-adding walk with the property of the index being zero, except that someone
else is doing the function iterations for us. More formally, we consider an index function
s : G→{0,1} that maps 1

r of the elements of G to 0 and sends all other elements of G to 1,
and we suppose that we are given access to only (s(gi))i≥0 and not to each gi or even to the
iteration function.

Since r is small, the property s(gi) = 0 cannot serve as a reasonable distinguishing prop-
erty. To overcome this problem, we fix a small positive integer δ and define a point gi to be
a distinguished point if and only if

s(gi) = s(gi+1) = · · ·= s(gi+δ−1) = 0. (1)

This may not seem to be a property of the point gi, as properties of its future points are being
used. However, as long as the iteration function is fixed to one deterministic function, since
future points are determined by gi, all future index values s(gi+ j) are, in fact, completely
determined by gi. Thus, this is a well-defined distinguishing property for the point gi.

A closer look at this distinguishing property reveals that it depends both on the group
element gi and on the iteration function. Hence, the term distinguished point may be slightly
misleading. It would be more appropriate to say that the element gi, which satisfies (1), is
the starting point of a distinguished path segment. Still, as long as we deal with a single fixed
iteration function, this type of distinguishing property can be used as a reasonable sieve in
the situation where access to information concerning each gi is very limited.

One inconvenience experienced when sieving with condition (1), which utilizes future
points, is that the distinguishing property of a point is confirmed only after one has passed
δ − 1 iterations beyond the point. It would be better if data concerning previous points are
utilized to define a distinguishing property. Hence, let us consider specifying the last point
of a distinguished path segment as a distinguished point. That is, we fix a small positive
integer δ and define a point gi to be a distinguished point if and only if

s(gi−δ+1) = · · ·= s(gi−1) = s(gi) = 0. (2)

Unlike the distinguishing property discussed before, whether or not a point gi ∈ G satisfies
this property is not completely determined by the point, even under a fixed iteration function.
It may happen that gi = g j, as elements of the group G, but that the above property is satisfied
by the points leading to gi and not by the points leading to g j. Thus, condition (2) does not
present a well-defined distinguishing property for the group element gi.
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Nevertheless, as long as our aim is to sieve points before checking for collisions, the
above mentioned definition is sufficiently useful. Let us recall the notation for the pre-period
and period of an iterated walk. With the second approach, the points that appear between
gλ+µ = gµ and gλ+µ+δ−2 = gµ+δ−2, both inclusive, may be sieved differently, depending
on the path segments that lead to them. However, the property is well-defined for all points
appearing from gλ+µ+δ−1 = gµ+δ−1 onwards. The situation with the parallelized versions of
the DLP solving algorithms may seem slightly different, as they do not exhibit a single loop,
but the above distinguishing property is well-defined for all the points that appear at least
δ−1 iterations away, in the forward direction, from each point of collision. Furthermore, we
show below that the average distance between distinguished path segments is of exponential
order in δ , so that the existence of such short segments for which the definition of the
distinguishing property is not very accurate will have little effect on the performance of
collision detection.

In the aforementioned two approaches for defining a distinguished point, the same def-
inition of a distinguished path segment was used. The only difference between these two
approaches was in whether the first or last entry of the distinguished path segment is des-
ignated as the distinguished point. It is clear that when adopting the distinguished path
segment approach in defining a distinguished point, any position within the distinguished
path segment may be set as the distinguished point, as long as this relative position is fixed
throughout the DLP solving process. In the rest of this paper, when using the distinguished
path segment approach, we use condition (2) and take the final point to be the distinguished
point.

We state that for collision detection, it is not sufficient to define a distinguished path
segment without specifying the position of the distinguished point. Partial information about
the elements belonging to path segments cannot provide reliable collision detection, unless
the length of the observed path segment is set to a value that is considerably larger than that
required for sieving.

Before moving on to some technical details, let us briefly discuss how the idea of the
distinguished path segment approach may be combined with any collision detection method.
Such a combination may be interesting in relation to the recent method [17] that uses stacks
and appears to be efficient.

Collision detection methods are usually described in terms of the nodes among which
we look for collisions, but it is sufficient to have access to any identification information
that uniquely identifies each node, and this identification information need not be the full
encoding of each node. For example, in the case of DLP solving, we expect to process
approximately

√
q nodes. Hence, in view of the birthday paradox, if we have a little more

than logq bits of information concerning each node, we can safely distinguish between the
nodes. Using a sufficiently large δ , one may safely distinguish between the nodes using the
s(gk) values leading to each node.

3.2 Distance Between Distinguished Path Segments

In the previous subsection, we saw that it was possible to define a distinguishing property on
the basis of the information gathered from multiple points. When applying this new method
of defining distinguished points, one should be able to predict and control the average it-
eration count between occurrences of distinguished points, so that the distinguished point
table is maintained at a reasonable size. This average distance is also the number of addi-
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tional function iterations required between the occurrence and detection of a node collision.
Hence, we have another reason to analyze the average distance between distinguished points.

Let us now refine our objective slightly. Note that if a certain node gi is a distinguished
point in the path segment sense, then the next node gi+1 is more likely to be a distinguished
point than a randomly chosen point within the walk would be. This shows that the dis-
tinguished points defined through the path segment approach are not uniformly distributed
within the random walk and that they tend to group together. On the other hand, for collision
detection, it is sufficient to choose and store just one node from each string of distinguished
points, as long as the choice is made in a consistent manner throughout the DLP solving pro-
cess. Hence, in relation to the distinguished point table size, we must compute the average
distance between consecutive strings or groups of distinguished points, rather than the av-
erage distance between all individual distinguished points. In fact, retaining the notations r
and δ from the previous subsection, since the probability of a random point appearing within
the random walk being a distinguished point is 1

rδ , we can say that the average distance be-
tween all distinguished points is rδ . However, this is not the information we need.

We need to compute the average number of iterations required to reach the first of the
next string of distinguished points. For this purpose, whenever gi is found to be a distin-
guished point, we ignore the possibility of gi+1 being a distinguished point, by simply for-
getting all the s(gk) values associated with the distinguished point gi and starting afresh. This
interpretation of average distance is also suitable in relation to the number of extra iterations
spent on collision detection. In summary, our goal is to find the length expectation up to the
first appearance of a δ -run of zeros in a random sequence of elements from {0,1, . . . ,r−1}.

Let pi denote the probability that a random sequence of length i contains no δ -run of
zeros and ends with a nonzero entry. Consider any sequence of length longer than δ that
contains no δ -run of zeros and ends with a nonzero entry. We focus our attention on the last
two nonzero entries. There are less than δ zeros between these two nonzero entries, with
the possibility of there being no zeros. Note that the second nonzero entry from the end will
mark the end of a subsequence that contains no δ -run of zeros and ends with a nonzero
entry. These considerations allow us to state that

pi+1 =
r−1

r
· pi +

r−1
r2 · pi−1 + · · ·+

r−1
rδ · pi−δ+1,

which can be equivalently stated in matrix form as



pi+1

pi

pi−1
...

pi−δ+3

pi−δ+2


=



r−1
r

r−1
r2

r−1
rδ

1 0 0
0 1 0

. . .
. . .

0 1 0
0 1 0





pi

pi−1

pi−2
...

pi−δ+2

pi−δ+1


.
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After adopting the notation

pi =



pi+δ−1

pi+δ−2
...
...

pi+1

pi


and A =



r−1
r

r−1
r2

r−1
rδ

1 0 0
0 1 0

. . .
. . .

0 1 0
0 1 0


,

and writing e j for the j-th coordinate unit vector, in row vector form, one can give the general
term as

pi = Ai p0 and pi = eδ Ai p0.

It is easy to argue that the initial values are p0 = 1 and p1 = · · ·= pδ−1 =
r−1

r .
Now, note that a sequence reaches its first distinguished point at length i if and only if

the last δ terms are zeros and these zeros are preceded by a subsequence of length i− δ
that contains no δ -run of zeros and ends with a nonzero entry. Hence, the probability for a
random sequence to reach its first distinguished point at length i is

qi := pi−δ ·
1
rδ .

Our goal of finding the expected number of iterations up to the first distinguished point
comes down to computing

∞

∑
i=δ

iqi =
1
rδ

∞

∑
i=δ

i pi−δ =
1
rδ

∞

∑
i=0

(i+δ ) pi =
1
rδ

∞

∑
i=0

eδ (i+δ )Ai p0. (3)

Before continuing, we provide a technical lemma concerning the convergence of a certain
sequence.

Lemma 1 The sequence of vectors (iAi p0)i≥0 converges to the zero vector.

Proof The probability for a finite sequence of length δ to be a distinguished point is 1
rδ .

Since the probabilities for non-overlapping segments of length δ to be distinguished points
are independent, the expected length up to the appearance of the first distinguished point
is bounded above by δ · rδ . That is, the sum of positive values ∑∞

i=δ iqi is bounded above
and we are assured of the convergence of this infinite sum. This implies, in particular, that
limi→∞ iqi = 0.

Now, for any 0≤ j < δ , we have

eδ− j lim
i→∞

iAi p0 = lim
i→∞

ieδ− j pi = lim
i→∞

i pi+ j = rδ lim
i→∞

i
pi+ j

rδ = rδ lim
i→∞

iqi+ j+δ = 0.

This shows that the (δ − j)-th component of limi→∞ iAi p0 must be zero. Since the coverage
of 0≤ j < δ shows all components to be zero, the proof is complete. ⊓⊔

The following theorem shows that the average distance between strings of distinguished
points is expected to be slightly larger than rδ .
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Table 1 Number of random sequence of elements from {0,1, . . . ,r− 1} until the first δ -run of zeros is
observed

r δ r
r−1 (r

δ −1) experiment result

4

6 5.460×103 5.468×103

7 2.184×104 2.181×104

8 8.738×104 8.734×104

9 3.495×105 3.494×105

10 1.398×106 1.398×106

8

4 4.680×103 4.678×103

5 3.744×104 3.751×104

6 2.995×105 3.002×105

7 2.396×106 2.376×106

8 1.917×107 1.956×107

20
4 1.684×105 1.685×105

5 3.368×106 3.365×106

Theorem 1 Suppose one defines distinguished points by checking for whether δ consecu-
tive points on the random walk all satisfy a condition of 1

r probability. When the iteration
function is taken to be a random function, one can expect to compute r

r−1 (r
δ −1) function

iterations, until the appearance of the first distinguished point.

Proof One can check by direct expansion that

(I−A)2
k−1

∑
i=0

(i+δ )Ai = A+δ (I−A)− (k+δ )Ak +(k+δ −1)Ak+1.

Hence the average distance given by (3) is equal to

1
rδ eδ (I−A)−2 lim

k→∞

(
A+δ (I−A)− (k+δ )Ak +(k+δ −1)Ak+1)p0

=
1
rδ eδ (I−A)−2(A+δ (I−A)

)
p0,

where the equality follows from Lemma 1. It now suffices to substitute

(I−A)−1 =


rδ · · · r2 r
rδ · · · r2 r
...

...
...

rδ · · · r2 r

−


0 1 · · · 1
. . .

...

0 1

0

 and p0 =


r−1

r
...

r−1
r

1


into the equation and simplify to arrive at our claim. ⊓⊔

A test of this theorem is summarized in Table 1. Using the random number generator
provided by the NTL library [30], a sequence of random elements from {0, . . . ,r− 1} was
generated until a δ -run of zeros was reached. Each experiment entry in the table is an average
of 220 resulting sequence lengths.
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4 Tag Tracing

In the DLP solving algorithm that combines the adding walk with the distinguished point
collision detection method, the process of determining the index value si = s(gi) and then
computing gi+1 = gimsi ∈G is continuously repeated, while the product gimsi is only occa-
sionally searched for and placed in a table of small size. Focusing on the fact that the storing
operation does not take place very frequently, we question whether the full computation of
the product gimsi is absolutely necessary at every iteration.

The iterative nature of the random walk generation requires each current position gi to
be fully available, but it might be possible to bypass this need through a suitable use of a
pre-computed table containing products of m j’s. It would then suffice to compute just the
index si = s(gi) at most of the iterations. We explore this line of reasoning in this section.

The general approach is explained in this section and more concrete constructions ap-
propriate for subgroups of finite fields are given in later sections.

4.1 Overview

Tag tracing is a DLP solving algorithm that generates a random walk with the adding itera-
tion function and performs collision detection with the distinguished point method. Neither
of these components are new and what tag tracing provides is a method of executing each
iteration of the random walk at a faster pace. This is achieved by utilizing a pre-computed
table and an auxiliary function that computes each index si = s(gi) without full access to gi.

Suppose we are given an index function s : G→S = {0,1, . . . ,r−1} and a multiplier
set M = {mi}i∈S , suitable for an adding walk. Fix a small positive number ℓ and suppose
that we have pre-computed all elements in the product set Mℓ = (M ∪{id})ℓ, where id is
the identity element of G. The set Mℓ consists of all products of at most ℓ-many multipliers.
Let us further assume that we have an auxiliary index function s̄ : G×Mℓ→S such that

s̄(y,m) = s(ym),

for every y ∈ G and m ∈Mℓ.
Then, given gi ∈ G, we may obtain si+1 = s(gi+1) = s̄(gi,msi) without computing the

product gi+1 = gimsi . Once the index value si+1 is available, since msi msi+1 ∈Mℓ has al-
ready been pre-computed, we can also obtain si+2 = s(gi+2) = s̄(gi,msi msi+1) without com-
puting the product gi+2 = gimsi msi+1 . We can continue this process for up to ℓ iterations
before we are forced to compute gi+ℓ = gimsi · · ·msi+ℓ−1 in order to proceed any further.
Note that this last computation is a single product between gi and the pre-computed element
msi · · ·msi+ℓ−1 ∈Mℓ.

The above process is advantageous over the original adding walk if the auxiliary index
function s̄(y,m) is easier to compute than the product ym. In the subsections below, we
explain the iteration procedure in more detail, discuss how the distinguished point collision
detection method can still be applied even without access to individual gi’s, and provide a
complexity analysis.

4.2 Iteration Function

Let us discuss the resources required for the creation and storage of the table Mℓ, before
describing the tag tracing formalism.
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4.2.1 Table of multiplier products

The tag tracing approach to DLP solving requires pre-computation of the set Mℓ, before
the adding walks can be traveled. The following two lemmas allow us to find the range of r
and ℓ, specifying S and Mℓ, respectively, that can be used with the available resources.

Lemma 2 The size of the set Mℓ is
(ℓ+r

r

)
when duplicates that are trivially evident from the

commutativity of the multipliers are removed.

Proof The size of Mℓ, taking into account the fact that multipliers commute with each other,
is exactly the number of combinations with repetitions, where one chooses ℓ times from the
set M ∪{id} of size r+1. This count is

(ℓ+r
ℓ

)
=
(ℓ+r

r

)
. ⊓⊔

Some example figures for this size are
(84

20

)
∼ 263.2 for 20-adding walks with ℓ= 64, and(72

8

)
∼ 233.4 for 8-adding walks with ℓ= 64. This size is very sensitive to the r value.

Lemma 3 The set Mℓ can be constructed using
(ℓ+r

r

)
− r−1 group operations.

Proof Consider the following arrangement of elements from Mℓ in an upright triangle.
Place the identity element of G at the top vertex. Arrange all multipliers mi in a row be-
low the identity element. Next, place all products of two multipliers mim j on the third row,
and so on. The bottom row consists of

(r+ℓ−1
ℓ

)
-many ℓ-products of the multipliers and the

complete triangle contains all
(r+ℓ

ℓ

)
-many entries from Mℓ.

Note that each element on any row can be computed from an element on its upper
row using a single group operation. Hence, the number of products required to create the
complete triangle is equal to the number of points on the triangle, less the elements of the
top two rows, which do not require any computation. ⊓⊔

Our use of the set Mℓ in tag tracing will be restricted to parameters r and ℓ such that(ℓ+r
r

)
≪√q. Deferring careful complexity analysis to a later subsection, this implies that

the cost of preparing this set is negligible in comparison to the main function iteration cost,
which is of

√
q order. Accordingly, the time complexity associated with the creation of Mℓ

will be ignored when we state the tag tracing complexities.
The above mentioned parameter range

(ℓ+r
r

)
≪√q also means that nontrivial collisions

within the set Mℓ, i.e., those that are unrelated to the commutativity of the multipliers, are
rare. However, when there are such collisions, if multipliers of the form gα hβ with β ̸= 0
were in use, the collision would bring about a linear equation concerning logg h that returns
the solution to the given DLP with a high probability.

4.2.2 Tag function

Let us formalize the auxiliary index function that was introduced in Section 4.1. To allow
for flexibility, we consider a slightly more complicated structure. Given the group G, we will
fix the index set S and a somewhat larger set T , together with an appropriate choice of the
following four functions.

τ : G→T .

τ̄ : G×Mℓ→T .

σ : T →S .

σ̄ : T →S ∪{fail}.
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The set T is called the tag set and the two functions τ and τ̄ are named the tag function
and the auxiliary tag function, respectively. The projections σ and σ̄ are to agree with each
other whenever σ̄ does not signal failure. We define the index function to be

s = σ ◦ τ : G→S ,

and we also define the auxiliary index function as

s̄ = σ̄ ◦ τ̄ : G×Mℓ→S ∪{fail}.

The four functions should be chosen in such a way that they satisfy the following conditions.

1. The index function s is surjective and roughly pre-image uniform, i.e., grouping G ac-
cording to its image points under s partitions G into subsets of roughly the same size.

2. When s̄(y,m) ̸= fail, we have s̄(y,m) = s(ym).

Thus, we are looking for a function τ that resembles a usual index function, but with a larger
image set, and we also seek another way τ̄ to evaluate τ on a pair of group elements. The
preliminary functions τ and τ̄ are allowed the possibility of not corresponding to each other
perfectly and this discrepancy is to be filtered out by the projections σ and σ̄ . The resulting
composition s̄ = σ̄ ◦ τ̄ should output what can reliably be said to depend only on the product
of group elements and should be equal to s = σ ◦ τ , except that it may occasionally fail in
producing an output.

For our tag tracing to be meaningful, the computation of s̄ should be easier than the
computation of a full product in G. Concrete constructions that satisfy all given conditions
will be given in later sections, but the intuition behind this approach is that it should take
less effort to obtain some partial information about a product than the full product itself. For
example, under a fixed encoding for a group, computation of the most significant k bits of a
product of two elements should be easier than computation of the full product. Computing
k bits out of the full n bits may require k

n of the time needed for a full product computation
and, should some of the product bits be easier to compute than others, the computation time
could be even shorter.

4.2.3 Random walks with tag tracing

Let us now continue along the lines of argument presented in Section 4.1. It should be clear
that if functions τ , τ̄ , σ , and σ̄ , that satisfy the conditions we have imposed on them, can be
constructed, we can create the random graph of a normal adding walk without computing
the full product at each iteration.

In traversing the random walk with tag tracing, full product computations are required
only when either ℓ iterations have been processed since the last full product, or when s̄
signals failure. When the computation of s̄ is assumed to be faster than a group operation,
each iteration of tag tracing will be faster on average than a single unmodified adding walk
iteration. On the other hand, since the random walk produced through tag tracing iterations
is a normal adding walk, its expected rho length will be that of a normal adding walk. Since
each iteration is faster, the tag tracing iterations will reach a collision earlier than the original
adding walk.

As a final check on tag tracing as an iteration mechanism, we would like to discuss
its exponent tracing capability. Since, the index value is available to tag tracing at every
iteration, either through the auxiliary index function s̄ or a full product computation, one
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can keep track of the exponent information for the current element in the gai hbi form, just
as was done with the original adding walk. Hence tag tracing is exponent traceable.

Tag tracing even allows an alternative that is slightly more efficient. Note that we know
how to write each element of Mℓ in the form gα hβ . We view the set Mℓ as a table, in which
every entry consists of three1 components. The first component is the information regarding
the combination of multipliers used in creating the entry, the second is the resulting group
element, and the third is the exponent information of the group element when expressed in
the gα hβ form. The table Mℓ is sorted according to the multiplier combination information,
or a hash table technique is utilized, so that table lookups are easy. Then, the bookkeeping
of exponent information, which was necessary at each iteration, can be deferred until a full
product computation is required, at which time, the information may be updated from the
table with just two modular q additions.

4.3 Collision Detection

To complete the description of tag tracing as a DLP solving method, we need to check if it
is possible to detect collisions. We shall see that the distinguished point method is suitable
for tag tracing.

To collect every distinguished point in a table, one must compute a full product at every
occurrence of a distinguished point, even when the ℓ-th tag tracing iteration has not yet been
reached. Still, we do not want the process of detecting distinguished points to induce any
extra full product computation. Below, we present three approaches to distinguished point
detection. Although the first approach will always work and is efficient, we provide two
other methods as alternatives that may be applicable to certain situations. The use of these
two additional approaches will become clearer when explicit constructions are given. We
also provide comments on how even the occasional full product computation done at each
distinguished point occurrence may be avoided.

4.3.1 Using consecutive index values

During the tag tracing iterations, one does not have full access to each group element gi
and this prevents the usual approach to distinguished point collision detection. Still, one
does have access to partial information si = s(gi) concerning each point in the random walk.
This is exactly the situation in which the distinguished path segment approach, described in
Section 3, can be used.

Depending on the maximum size of the distinguished point table one plans to incremen-
tally collect, one decides on the desired average distance ∆ between distinguished points.
One then chooses a positive integer δ such that ∆ ≈ r

r−1 (r
δ −1). If one defines the distin-

guishing property to be that consecutive δ -many indices si are zero, then Theorem 1 assures
us that the resulting distinguished points will be ∆ iterations apart, on average.

Recall that, since we are defining the latest point on a distinguished path segment as the
distinguished point, there is some ambiguity regarding the distinguished point definition for
points on the random walk that are within δ iterations of the true point of collision. As briefly
mentioned in Section 3, since δ is of logarithmic order in the desired average distance ∆

1 In actual implementations, the first component may serve as the address of each entry and could be
absent. Later, when concrete constructions suitable for finite fields are given, we shall add a fourth component
to the three components given here.
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between distinguished points, whereas the distinguished point collision detection method
requires O(∆) extra iterations after the point of collision, the distinguished point definition
ambiguity has a negligible effect on the performance of collision detection.

4.3.2 Using consecutive tag values

Under some constructions of the tag tracing setting, one might have τ̄(y,m) = τ(ym) for
every y ∈ G and m ∈Mℓ. In such a fortunate case, one may use the distinguished path
segment approach on the tag values, rather than on the index values. Since tags are larger
than indices, this allows the length of the observed path segment to be shorter.

This approach can also be used when τ̄(y,m) = τ(ym) is not always true, but when
some reliable information about ym can always be deduced from τ̄(y,m). Of course, the
index is one such reliable information, when it does not fail, but if information larger than
that given by the index can be obtained from τ̄ without failure, its use could be advantageous
over the use of the indices.

4.3.3 Using unavoidable full product computations

Let us first use a rough example to explain this final approach to defining a distinguished
point. We shall temporarily use the notation g j = gim, with m∈Mℓ, and suppose that the tag
set T consists of some integers. Recall that τ and τ̄ are to be constructed in such a way that
τ̄(gi,m) is almost equal to τ(g j), but that we cannot always rely on them to be identical. Still,
suppose that the event τ(g j) = 0 at least reliably implies τ̄(gi,m)∈ {−1,0,1}. Furthermore,
suppose that the projection σ̄ returns failure on every element of {−1,0,1}.

Under the assumptions we have described, whenever we have τ(g j) = 0, the auxiliary
index function s̄ = σ̄ ◦ τ̄ returns failure, and the full product g j = gim is computed. Hence,
it is reasonable to set the distinguished point condition to something similar to

“τ(g j) = 0 and twenty MSBs of g j are equal to zero.”

Then, whenever the current point g j has the possibility of being a distinguished point, we
would already have full access to g j, and both the tag-condition and the MSB-condition
could be checked directly from g j. This distinguishing property does not entail any extra
full product computation beyond what is already required by tag tracing iterations.

The double condition for a distinguished point is different from requiring just the MSB-
condition, since full access to g j was a byproduct of the tag-condition being met. Also, we
cannot replace the tag-condition with either “τ̄(gi,m) ∈ {−1,0,1}” or “failure of s̄,” since
neither outcome is a reliable function of the current point g j. Both τ̄ and s̄ are functions of
the pair (gi,m), not of the product g j = gim.

Let us summarize the above example as a general method. Suppose that we have a con-
struction of the tag tracing formalism under which s̄(gi,m)= fail is a necessary condition for
τ(gim) to satisfy a certain “Condition-X.” Then, one may set the distinguishing property for
group element g j as a combination of Condition-X on tag value τ(g j) and some extra con-
dition on g j. The extra condition on g j can be used to control the average distance between
distinguished points. This distinguished point definition does not increase the frequency of
necessary full product computations. A more concrete example of the current approach is
given in Section 6.3.3.
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4.3.4 Distinguished point storage and full product computation

Our description of tag tracing defaults to computing a full product at each distinguished
point occurrence. In practice, distinguished point occurrences are much less frequent than
the return of the ℓ-th iteration limit, hence their effect on the total running time is very small.
Still, let us explain that even these full products are not absolutely necessary.

In using the distinguished point method with any DLP solving algorithm, the final dis-
tinguished point table will contain much less than

√ π
2 q entries. Hence, the birthday paradox

allows us to argue that computing and storing just logq bits of information for each distin-
guished point will suffice to safely distinguish between the distinguished points. This partial
information may come either from a partial product computation, or, as described at the end
of Section 3.1, it may be a sequence of index values that is sufficiently long.

If the partial information approach is used, collisions discovered within the distinguished
point table are quite probably, but not necessarily, true collisions, so one would need to run
a final check through explicit exponentiation when a solution candidate is returned by the
DLP solving algorithm.

4.4 Complexity Analysis

Let us provide rough comparisons of the time and storage complexities of the tag tracing
method with those of the original adding walks. The tag tracing algorithm is compactly
presented as a pseudo-code in Algorithm 1 for easy reference.

Algorithm 1 Tag tracing
1: compute multiplier product table Mℓ

2: prepare an empty table of distinguished points
3: y← random power of g
4: initialize exponent information for y
5: while {distinguished point table contains no collision} do
6: i← 0, m← id
7: while {

(
i < ℓ

)
and

(
τ̄(y,m) ̸= fail

)
and

(
ym is not a distinguished point

)
} do

8: si← τ̄(y,m)
9: look up mmsi = ms0 · · ·msi in table Mℓ

10: m←mmsi
11: i← i+1
12: end while
13: fully compute the product ym
14: y← ym
15: update exponent information for y using that of m
16: if {y is a distinguished point} then
17: add y to the table of distinguished points, together with its exponent information
18: end if
19: end while
20: solve for DLP solution from the exponent information of colliding elements

4.4.1 Time complexity

We assume that the various parameters for tag tracing have been chosen so that the time
taken for preparation of Mℓ, given by Lemma 3, is insignificant when compared to that taken
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by the main function iterations. We also ignore the cost of keeping track of the exponents
that lead to the linear equation concerning the discrete logarithm. Since a group of size q is
usually realized as a subset of a considerably larger or complicated structure, the exponents
of order q require less resources to compute than the group operations.

We denote the expected time for a single r-adding walk iteration by |Fr| and that of a
single s̄(y,m) evaluation by |s̄|. Note that the time taken for a full product computation in G
is almost equal to |Fr|. Hence, the requirement that s̄ be easier to compute than the group
operation, can be stated as |s̄||Fr | < 1.

The time taken for the occasional full product computation performed during tag tracing
is also assumed to be |Fr|. Care must be taken when using this assumption, since the time
for full product computation depends on the encoding for G, and explicit construction for
tag tracing may restrict the choice of encoding to something different from what would be
used with the unmodified r-adding walk.

Most iterations of tag tracing will require just one computation of s̄ and full products are
required only when either the ℓ-th iteration is reached, s̄ returns failure, or a distinguished
point is found. Hence, the expected time for a single iteration of tag tracing is bounded above
by

|s̄|+
(1
ℓ
+Pfail +

1
∆

)
|Fr|, (4)

where Pfail is the probability that s̄ will return a failure and ∆ is the average number of
iterations between distinguished points. Since tag tracing generates a normal r-adding walk,
its total time complexity in solving a DLP is

{
|s̄|+

(1
ℓ
+Pfail +

1
∆

)
|Fr|
}{( rho length of

r-adding walk

)
+∆

}
. (5)

Since the time complexity of the unmodified r-adding walk is

|Fr |
{( rho length of

r-adding walk

)
+∆

}
,

we can claim

|s̄|
|Fr|

+
1
ℓ
+Pfail +

1
∆

(6)

as the ratio of DLP solving time between the two algorithms. If this ratio is less than 1,
we have a reduction in the DLP solving time. As discussed at the end of Section 4.2.2,
intuitively, it should be possible to define an index function that is easier to compute than
the full product, and hence be able to construct τ and τ̄ such that |s̄| is much smaller than |Fr|.

The above equation has some implications on the choice of parameters. One would of
course like to keep all four terms small, but if one of the terms cannot be reduced beyond a
certain point, it is meaningless to reduce the other terms to a value considerably smaller than
the dominating term. For example, if there is a |s̄|

|Fr | value that one will have to accept for a
certain group G on a certain implementation platform, it does not make sense to increase ℓ
beyond a certain point at the cost of larger storage use and longer table preparation time.
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4.4.2 Storage complexity

Tag tracing clearly requires more storage than does the original adding walk. The extra
storage size is given by Lemma 2, but since both methods require a distinguished point
table, whether this extra amount is significant or not depends on the design choices.

Recall that the distinguished point collision detection method requires extra function
iterations after the point of collision. Since a larger distinguished point table reduces these
extra iterations, one would tend to use as large a distinguished point table as is manageable
under the available resources. The choice of parameters for the table Mℓ will also be similar.
Up to a certain point, a larger pre-computation table implies faster tag tracing, and the limit
of manageable storage size becomes a bound for the size of Mℓ.

Given the same resources, it would be fair to say that a person who is implementing tag
tracing would allocate most of the storage to a large Mℓ and use a smaller distinguished
point table than a person who is implementing the original adding walk, because the effect
of reducing the distinguished point table is not critical to the overall performance, except
when near the extremes. We thus have an argument, albeit quite weak, that with a reasonable
choice of parameters, the storage use by tag tracing will be comparable to that of the original
adding walk.

4.5 Use of Small r

In a practical small software implementation of tag tracing, the available online memory
places a restriction on the size of table Mℓ. A large table brings about slow table lookups
and leads to a larger |s̄|. This may not be the case with large scale implementations in which
the hash table technique is used for constant time access to large storage, but let us consider
the situation where the size of Mℓ is restricted by the available resources.

The ratio (6) between the original adding walk and tag tracing of the time taken by a
single iteration shows that when a small |s̄||Fr | is achievable, one would wish to use a large ℓ.

On the other hand, Lemma 2 states that |Mℓ|=
(ℓ+r

r

)
, so that r has a critical effect upon the

table size when a large ℓ is in use. Therefore, a bound on storage size may restrict our choice
of r to small integers.

Testing done on elliptic curve groups [32] has shown that the 20-adding walk presents
behavior that is quite close to what is optimal. Since it is known that smaller r values lead
to longer r-adding walk rho lengths, for practical uses of tag tracing, we need to discuss
how the choice of small r impacts the overall performance. To explore this area, we ran tests
comparing the average rho lengths of r-adding walks under small r values against that of the
20-adding walk.

Let us explain the details of the experiment setting. First, primes p and q and a cyclic
group generator g ∈ F×p of order q were randomly generated in the manner described for
DSA [18]. Next, an element h ∈ F×p and the multiplier set were randomly selected. The
r-adding walk iteration function was then iterated from a random starting point until the
walk intersected itself in a rho. We took measures to identify the exact point of collision,
rather than rely on distinguished points that would give approximate collision positions. The
length of the rho was recorded and this process was repeated 20,000 times for each iteration
function with a newly generated set of g, h, and the multiplier set. The size of p was set to
1024 bits throughout the test, but the group size q was varied. The index function sr : Fp→
{0, . . . ,r−1} for the r-adding walk was defined to be sr(y) = ⌊r · (φ ·y mod 1)⌋, where φ
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Table 2 Average rho lengths for various iteration functions, in units of
√

π
2 q

⌈logq⌉ 10 15 20 25 30 35 40 45 average

FP 1.27 1.29 1.28 1.30 1.29 1.29 1.30 1.29 1.29
F3 1.60 1.85 2.04 2.22 2.40 2.54 2.68 2.85 -
F4 1.30 1.34 1.36 1.36 1.35 1.35 1.34 1.35 1.34
F8 1.08 1.09 1.09 1.08 1.09 1.08 1.08 1.08 1.08
F20 1.03 1.04 1.03 1.03 1.02 1.03 1.03 1.03 1.03

is a rational approximation of the golden ratio
√

5−1
2 . When φ is of sufficient precision, this

is known to bring about a uniform looking distribution [15], even on non-uniform inputs.
For our experiment, a precision of 1044 binary places for φ is sufficient.

The test results are summarized in Table 2. The top row shows the size of prime q in
bits. Each row corresponds to an r-adding walk for a specific r, except for the top row, which
corresponds to Pollard’s original iteration function. The numeric values are rho lengths given
in units of

√ π
2 q, which is the rho length expected of a random function.

Let us use the notation ρP for the expected rho length of Pollard’s original iteration
function and write ρr for the rho length of the r-adding walk. The table clearly shows that
the ρr√

πq/2
values are quite stable over a wide range of group orders for each r≥ 4. The case

of the 3-adding walk is a clear exception to this stable behavior. In fact, this clear distinction
between the 3-adding walk and the other r-adding walks was also noted in [25] and [32], in
which the tests were performed on groups different from the multiplicative subgroups of the
prime fields.

Supported by the stable figures of Table 2, the arguments presented in this paper assume
that the complexity of r-adding walks is O(

√
q) for r≥ 4, even when q is significantly larger

than the values we have tested, and that the constants hidden behind the big-O notation can
be inferred from Table 2. In particular, we assume that the ratios

ρ4

ρP
≈ 1.04,

ρ4

ρ20
≈ 1.31, and

ρP

ρ20
≈ 1.25, (7)

which may easily be computed from the average values appearing in Table 2, are roughly
correct, even on very large prime order groups.

Even though our claim (7) is based on experiment data, some related theoretic studies
may be found in [25, 32]. They provide partial support to the claim that the expected rho
lengths of r-adding walks, for a certain range of r values, are asymptotically O(

√
q).

Note that any theoretical comparison of tag tracing with the unmodified r-adding walk,
concerning their asymptotic behaviors as q is increased, is not affected by the uncertainty of
the r-adding walk rho lengths. We may simply let the tag tracing use whatever r value the
unmodified r-adding walk would have used. In such a case the pre-computed table size may
be very large, but it remains constant as q is increased. Arguments that consider asymptotic
performance of tag tracing as the finite field size is increased, but with a fixed group size q,
are also not affected by the true rho lengths of various r-adding walks. In such a discussion,
as can be seen from (5), the rho length only works as a large multiplicative constant. The
issues discussed in this subsection need only be considered for practical applications of tag
tracing.
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4.6 Pollard’s Kangaroo Algorithm and Tag Tracing

Suppose we know beforehand that logg h lies in an interval [L,U ]⊂ [0,q−1]. Such a situa-
tion may occur, for example, when the DLP target h = gx is created from a small exponent x,
chosen with the intension of accelerating exponentiation. Pollard’s kangaroo algorithm is
another variant of the rho algorithm that is well suited to this situation. The algorithm is
sometimes called Pollard’s lambda2 algorithm, and it solves DLP with O(

√
ω) complexity,

where ω =U−L. We refer readers to the original work [22] and related articles [20, 23, 33]
for details.

The kangaroo method uses a special type of the r-adding walk iteration function, in
which the multipliers are taken to be of the form gα . Collisions are detected through the
distinguished point method. Hence, application of the tag tracing approach to the kangaroo
method is quite natural. Moreover, since the multipliers do not depend on h, we may pre-
compute the table Mℓ, even before the DLP target h is given.

There are two suggestions in the literature concerning the choice of multiplier exponents.
One is to take the exponents to be of the form {1,x, . . . ,xr−1} and the other is to use twenty
random exponents. The latter method is more appropriate for the tag tracing version of the
kangaroo method, since a small r is desirable, and the former method tends to require a large
index set in order for it to be useable.

5 Application to Subgroups of Finite Fields with Large Extension Degrees

In this section, we construct an explicit tag tracing setting that is suitable for cyclic sub-
groups of the finite fields with large extension degrees. The elements of a finite field with a
large extension degree are usually represented in either the polynomial basis or the normal
basis form. In this paper, we only discuss the case of the polynomial basis. Tag tracing on
the normal basis is addressed in the appendix of [12].

Let us fix the finite field to Fpn = Fp[x]/⟨p(x)⟩, where p(x) ∈ Fp[x] is an irreducible
polynomial of degree n, and view elements of Fpn as polynomials y(x) of degree less than n.
Given an integer k and a positive integer r, we use the notation modr k for the non-negative
integer less than r that is congruent to k modulo r. Extending the notation used with inte-
gers to polynomials, we write

⌊
y(x)
f(x)

⌋
and modf(x)y(x) to denote the quotient and remainder,

respectively, of the polynomial division of y(x) by f(x). Throughout this section, the term
p-digit will refer to an element of Fp. Some readers may find it easier to read this section
with p fixed to 2 and with the word bit used instead of the term p-digit.

5.1 Tag Tracing Setting

Let us construct the four functions that need to be provided for tag tracing on subgroups
of F×pn . Although the actual functions we provide below may appear complicated, the core
ideas are quite simple. In very rough terms, the tag will be the most significant few p-digits
of the given element. We show that it is possible to compute a few most significant p-digits
of a product without fully computing the product. This partial product computation can
be done without failure, and hence our auxiliary tag function can always agree with the tag

2 The term Pollard’s lambda algorithm is sometimes associated with the parallelized versions of the rho
variants.
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function. This removes the need for the auxiliary projection function to fail, and the auxiliary
index function will always agrees with the index function.

Let us now be more concrete. Choose positive integers r and t such that r ≤ pt. The
multiplier product length ℓ is chosen in such a way that the time and storage complexities
given by Lemma 2 and Lemma 3 are manageable and are also insignificant in comparison
to
√

q. The tag set is fixed to

T =
{

y(x) ∈ Fp[x]
∣∣ deg y(x)< t

}
,

which can be identified with the set of all non-negative integers less than pt. The tag function
τ : G→T is defined to be

τ
(
y(x)

)
=

⌊
modp(x)y(x)

xn−t

⌋
. (8)

Since a small r value is desirable, (r,t) = (4,2) or (8,3) are good choices for application to
subgroups of F×2n .

The tag value (8) is simply the t-many highest degree p-digit coefficients of the input
group element in its polynomial basis format. No division is involved in obtaining these co-
efficients if the input is already in its modulo p(x) reduced form. Clearly, the tag function τ ,
as a function defined on all of Fpn , is surjective and exactly pre-image uniform. Hence,
when the target group G is assumed to be randomly distributed within Fpn , this tag function
partitions G into subsets of roughly the same size.

As for the projection σ : T →S = {0,1, . . . ,r−1}, we choose any surjective function
that is roughly pre-image uniform and easy to compute. For example, when r is a divisor of
|T |= pt, one may use

σ(k) = modr k,

where we are viewing the elements of T as non-negative integers less than pt. Then, the
index function s = σ ◦τ is roughly pre-image uniform. When |T | is not a multiple of r, one
may have to devise an ad hoc projection, such as something similar to the sr index function,
which appeared in Section 4.5.

We now discuss the auxiliary tag function τ̄ : G×Mℓ → T . Given two polynomials
y(x),m(x)∈ F×pn we want to compute the t-many highest degree coefficients of their product
reduced modulo p(x). Under the notation modp(x)y(x) = ∑n−1

i=0 yixi, we can write

y(x)m(x)≡
n−1

∑
i=0

yi xi m(x)≡
n−1

∑
i=0

yi

{
modp(x)

(
xi m(x)

)}
(mod p(x)).

Observe that the right end of this modular equivalence is a sum of polynomials of degree
less than n, and hence that the resulting sum is also of degree less than n. This shows that
we have

modp(x)
{

y(x)m(x)
}
=

n−1

∑
i=0

yi
{

modp(x)
(
xi m(x)

)}
, (9)

which is not just a modular equivalence, but an equality of polynomials.
Now, focusing on the few highest degree terms from both sides of this equality, we can

conclude that, in order to compute the highest degree part of modp(x)
{

y(x)m(x)
}

, it suf-
fices to compute a Fp-linear combination of the highest degree parts of modp(x)

(
xi m(x)

)
’s.

Restating this in terms of tag values, we can write

τ
(
y(x)m(x)

)
=

n−1

∑
i=0

yi τ
(
xi m(x)

)
. (10)
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There is now only one reasonable way to define the auxiliary tag function. Given group
elements y(x) ∈ G and m(x) ∈Mℓ, we define their auxiliary tag function τ̄ : G×Mℓ→ T
output as

τ̄
(
y(x),m(x)

)
=

n−1

∑
i=0

yi τ
(
xi m(x)

)
, (11)

where the notation yi is given by modp(x)y(x) =∑n−1
i=0 yixi. Since each τ

(
xi m(x)

)
is of degree

t− 1 at the most, the defined output value is also of degree at most t− 1 and it lies in T .
The discussion thus far presented and the definition of τ̄ make it clear that given any two
element y(x) and m(x) of Fpn , we always have

τ
(
y(x)m(x)

)
= τ̄
(
y(x),m(x)

)
.

The only remaining component, the auxiliary projection function, is set to σ̄ = σ and
does not return failure signs. We now automatically have the index function s = σ ◦ τ and
the auxiliary index function s̄ = σ̄ ◦ τ̄ in agreement on corresponding inputs, without s̄ ever
failing.

Now that we have described the tag tracing setup in full detail, we state that an analogous
approach that takes t-many lowest degree p-digits coefficients as tags is also possible. It
suffices to replace (8) with

τ
(
y(x)

)
= modxt

{
modp(x)y(x)

}
and retain (11) as the definition for the auxiliary tag. We have chosen to work with the
highest degree part, as it has advantages in computing Mℓ, when the second highest term of
p(x) is of low degree.

5.2 Tag Tracing

In the previous subsection, we provided all the four functions required for tag tracing that
were introduced in Section 4.2.2, and we also verified that they satisfy almost all the condi-
tions that were imposed on them. One condition we did not discuss was whether the auxiliary
index function was easier to compute than the group operation. This will be discussed later
in this subsection.

We are now ready to begin tag tracing on subgroups of F×pn . Using the proof of Lemma 3
that appeared in Section 4.2.1 as a construction guide, we build the table Mℓ. Recall from
Section 4.2.3 that each entry of the table consists of three components, i.e., the multiplier
combination information, the group element in full form, and the exponent information. For
each m ∈Mℓ, we add the following fourth component to each entry of the table.(

τ(x0m),τ(x1m), . . . ,τ(xn−1m)
)
. (12)

Note that these have appeared before, in the right-hand side of (11).
We can now follow the discussion of Section 4.2.3 to step through each iteration of tag

tracing. The group elements are written in polynomial basis form so that coefficients yi ∈ Fp
are quickly accessible. Auxiliary tags are computed through (11) with table lookups to the
fourth entry (12). Since the auxiliary index function never fails, full product computation
between group elements is required only when ℓ tag tracing iterations are reached or a distin-
guished point is discovered. In fact, the index value will be read off the element through (8)
only after a full product computation. The path segment approach of Section 4.3.1 is used to
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define distinguished points. When tag set size pt is strictly larger than r, it is also possible
to use the approach of Section 4.3.2.

It still remains to be seen if each iteration of this tag tracing realization will be faster
than a group operation. The computation of auxiliary tag function (11) requires nt products
and less than nt additions in the small field Fp. Disregarding the cost of projection σ̄ , we
may state that the computation of s̄ requires less than 2nt operations in Fp. Let us write
Mulp(n) to denote the number of operations in Fp that are required to multiply two elements
of Fpn . Recalling (6), since s̄ never returns failure, we can claim

2nt
Mulp(n)

+
1
ℓ
+

1
∆

(13)

as the ratio of the DLP solving time of tag tracing and that of the unmodified adding walk. As
discussed in Section 4.5, this ratio may have to be multiplied by ρ4

ρ20
≈ 1.31 when practical

storage issues force the use of r = 4 with tag tracing. In any case, when n is large compared
to t, which is natural to expect for finite fields of large extension degree, this ratio is likely
to be considerably smaller than 1, which implies that tag tracing will be advantageous over
the unmodified adding walks.

5.3 Asymptotic Complexity

The time complexity of adding walks in solving DLPs is usually said to be of O(
√

q) and
in Section 4.5 we provided experimental evidence that the same may be said of tag tracing
when r ≥ 4 is used. Note that the unit used in this complexity claim is the time taken for
a single application of the iteration function. For subgroups of the finite fields, this unit of
time may be rather independent of q, but it is intimately correlated to the size of the finite
field containing the group. In this subsection, we consider the asymptotic complexity of tag
tracing on prime order q subgroups of F×pn as n is increased, while p and q are kept fixed.
In other words, we study the asymptotic behavior of the constant hiding behind the big-O
notation of O(

√
q) as the base field size is increased.

We clearly state once more that this section considers the asymptotic behavior of tag
tracing when the size of the finite field containing the group, rather than the size of the
group, is increased.

Reviewing the arguments leading up to (13) and recalling (5), the complexity of tag
tracing may be written as {

2nt+
(1
ℓ
+

1
∆

)
Mulp(n)

}{
ρr +∆

}
, (14)

where ρr is the expected rho length of an r-adding walk. We take t and hence also r = pt

to be small constants and choose to use ℓ = Θ(n). The average distance ∆ between distin-
guished points is fixed in such a way that the number of entries ρr

∆ in the final distinguished
point table becomes a manageable constant O(1). The first term 2nt(ρr +∆) is then trivially
O(n)ρr, and since Mulp(n) is at most quadratic in n, the second term 1

ℓ Mulp(n)(ρr +∆) is
also O(n)ρr. As for the third term, we can claim

1
∆

Mulp(n)
(
ρr +∆

)
= Mulp(n)

(
O(1)+1

)
= O(1)Mulp(n). (15)

Combining the three terms, we can write the asymptotic complexity of tag tracing as

O(n)ρr +O(1)Mulp(n).
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The O(1) factor in front of Mulp(n), which is roughly the final size of the distinguished point
table, can only be much smaller than ρr. Hence, in practice, the O(n)ρr term, rather than the
O(1)Mulp(n) term, is the dominating term. Furthermore, the smaller second term may be
replaced by a single solution verification exponentiation if the approach of Section 4.3.4 is
taken. In conclusion, if we exclude a finite number of products in Fpn , the complexity of tag
tracing becomes linear in the extension degree n.

We have already mentioned that the auxiliary tag function τ̄ computes t-many most
significant p-digits for the product of the two given inputs. To obtain the full product of
two elements from Fpn , given in their polynomial basis representation, one must compute
all products between n2-many pairs of Fp elements. In comparison, τ̄ computes nt-many
products of p-digit pairs. We have obtained a t

n factor reduction in computation, by requiring
only t-many p-digits out of the n-many p-digits of information.

The issue of storage complexity remains to be considered. To be able to compute (11)
without delay, each entry of Mℓ requires nt-many p-digit places to store the fourth compo-
nent (12). Disregarding the first three smaller components, the storage complexity may be
written as (

ℓ+ r
r

)
nt,

where the unit of storage is a p-digit. When ℓ=Θ(n), this is of O(nr+1) complexity.
In summary, as n is increased with p and q fixed, tag tracing runs at the linear O(n)

time complexity. The reduction that is seen when this is compared with the unmodified
adding walk, which typically runs at O(n2) time complexity, is achieved at the cost of storage
of polynomial complexity O(nr+1). The use of seemingly larger storage is justifiable in
practice, as it can be chosen to be much smaller than the effective time complexity of O(n)ρr.

Before ending this section, we remark that the ratio (13) shows that there is no advantage
in increasing the tag set size t to anything larger than what is required for the index. Since
the practical bound on the size of table Mℓ is likely to force the use of a small r, it is
advisable to equate r with pt and use a small t.

5.4 Implementation of Tag Tracing on Binary Fields

We have tested tag tracing on prime order subgroups of the binary fields F2n with an im-
plementation on a modern PC3 and compared it with the original rho algorithm and the
unmodified 20-adding walk. In implementing Pollard’s original iteration function and the
20-adding walk, we used the binary field arithmetics functions from the NTL library [30],
so as not to be biased in favor of tag tracing.

Note that [11], for each n≤ 5000, it is possible to choose the irreducible polynomial p(x)
in such a way that its second highest term is of degree that is at most 3+ log2 n. Many
implementations of the binary field take advantage of this situation, as having a second
highest term of low degree allows for efficient field multiplication computations. We took
the same approach in our implementations.

Throughout the test, we set the extension degree n to one of 1024, 2048, or 3072, so that
they matched the sizes used in our prime field experiments, which will be presented later,
but readers may want to recall [5] that the DLPs on F2n are easier than the DLPs on Fp when
the two fields are of approximately the same size.

3 Intel Core2Duo E6700 2.67GHz CPU, 4GB RAM. Only a single core was used in any timing measure-
ments.
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Table 3 Average time taken for 108 iterations of various iteration functions, measured on 206-bit prime
order subgroups of F×2n (Unit: second; Fr,ℓ refers to tag tracing that uses r-adding walk and multiplier product
length ℓ; Timings for pre-computation of Mℓ are given in parentheses)

n 1024 2048 3072

FP 295.5 751.2 1390.1
F20 401.8 1070.5 2014.0

F4,10 46.7 (0.0091) 120.5 (0.018) 222.1 (0.028)
F4,20 27.0 (0.070) 67.1 (0.15) 122.8 (0.28)
F4,30 21.9 (0.28) 53.9 (0.68) 93.9 (1.16)
F4,40 22.0 (0.87) 48.7 (1.93) 81.1 (3.45)
F4,50 22.0 (1.90) 45.7 (4.43) 73.5 (7.97)
F4,60 22.6 (3.89) 44.3 (8.97) 68.1 (15.8)
F4,70 23.1 (7.17) 43.1 (16.7) 64.9 (28.8)
F4,80 23.6 (11.7) 41.7 (27.5) 62.7 (49.1)
F4,90 24.1 (18.5) 42.1 (43.8) −
F4,100 24.5 (28.3) − −
F8,10 60.2 (0.34) 141.3 (0.71) 248.8 (1.24)
F8,18 52.6 (11.8) 105.8 (25.1) 169.1 (44.3)
F8,19 52.0 (16.7) 102.6 (35.3) −
F8,20 52.2 (24.0) − −

5.4.1 Speed comparisons on large groups

We wanted to compare the DLP solving algorithms under realistic parameters. However,
since it is not possible to do any full DLP solving on such parameters, we measured the
speed of the various iteration functions under large parameters. The comparison of full DLP
solving time among different algorithms can be based on the measured function iteration
speeds and the relative expected rho lengths given by (7).

We ran Pollard’s original iteration function, the 20-adding walk, and the tag tracing it-
eration over multiple parameter sets, each for 108 iterations and measured the execution
time. Each timing measurement started with a randomly generated 4-tuple of group gener-
ator g(x), DLP target h(x), multipliers m(x)i, and initial point. Each parameter set was run
100 times and the collected timings were averaged. The subgroup sizes were always taken
to be 206-bit primes. For tag tracing, every combination of

r ∈ {4,8} and n ∈ {1024,2048,3072}

was used with tags of bit length
t= log2 r.

All results are summarized in Table 3. Each row labeled as Fr,ℓ corresponds to tag tracing
that is based on an r-adding walk with the multiplier product length set to ℓ. The values given
in parentheses for each of the tag tracing timings are the time taken for preparation of the
corresponding multiplier product table Mℓ.

Notice that Pollard’s original iteration function FP is clearly faster than the unmodified
20-adding walk function F20, regardless of the finite field size. This is because Pollard’s
iteration function uses squaring, which is faster than multiplication on binary fields. As
indicated by (7), the rho length of Pollard’s original iteration function is likely to be longer
than that of the 20-adding walks by a factor of ρP

ρ20
≈ 1.25. Taking into account both this and
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the speed differences presented in Table 3, we can expect the rho algorithm to be faster than
or at least comparable to the 20-adding walk in solving DLPs. Hence, on subgroups of the
binary fields, it is reasonable to compare tag tracing with the rho algorithm rather than with
the 20-adding walk.

Let us briefly discuss the data obtained for tag tracing. Going down the n= 1024 column
and observing the data for tag tracing with r = 4, we see that the speed initially increases
with an increase in ℓ, but slowly decreases after achieving its highest speed at ℓ = 30. This
can be understood from (4), the expected time for a single tag tracing iteration. When the
effort |τ̄| of computing tags matches 1

ℓ -th of the full product computation effort |Fr|, any
further increase in ℓ has very little effect in reducing the average tag tracing iteration time.
On the other hand, the increase in table size that accompanies an increase in ℓ slowly worsens
the performance. Such an initial increase in speed followed by a decrease is also observable
for n = 2048, although only barely. The size of online memory available to us and the
primitive table structure in our implementation limited the range of ℓ that we could use, and
this prevented us from observing similar behavior in the other cases, including all three r = 8
cases.

For the n = 1024 case, of all the parameters that we tried, tag tracing gave its best
performance at r = 4 and ℓ = 30, achieving a speed of 21.9 seconds per 108 iterations.
In comparison, the speed of the rho algorithm for n = 1024 was 295.5 seconds per 108

iterations. Since we know from (7) that the rho length of a 4-adding walk is expected to be
slightly longer than that of the rho algorithm by a factor of ρ4

ρP
≈ 1.04, the time ratio for full

DLP solving by these two algorithms is expected to be 295.5
21.92

1
1.04 ≈ 13.0, with the tag tracing

at an advantage. Corresponding figures that compare the rho algorithm with tag tracing on
binary fields of n= 2048 and 3072 are 17.3 and 21.3, respectively. Thus, on subgroups of the
binary field, tag tracing achieves approximately 13.0, 17.3, and 21.3 factor speedups in DLP
solving compared to existing algorithms, when the field extension degree is 1024, 2048,
and 3072, respectively. Note that, since our use of tag tracing was limited by the amount of
available online memory, better results, especially in the n = 3072 case, can be anticipated
with larger resources.

The issue of pre-computation time for the table Mℓ needs to be addressed. Our speed
comparison thus far has completely ignored the pre-computation time required for tag trac-
ing. This requires some explanation, since, for example, the entry “62.7(49.1)” in Table 3
for F4,80 at n = 3072, shows table preparation time comparable to the tag tracing execution
time. To this end, we should recall that the timings provided in Table 3 were for 108 ≈ 226.6

iterations and that we were testing on a 206-bit sized group. To solve a DLP on a group of
206-bit prime order, we would expect to compute O(2103) iterations of tag tracing. Hence,
compared to the expected full DLP solving time of O(62.7×276.4) seconds, the 49.1 seconds
of table preparation time is indeed negligible. Even if we had worked with an 80-bit sized
group (of 40-bit security), any of the pre-computation times presented in Table 3 would be
negligible in comparison to the total tag tracing iteration time, so the complete dismissal of
table preparation time is justified.

5.4.2 DLP solving on small groups

In the previous subsection, we provided test results that compared the performance of tag
tracing with existing algorithms on subgroups of the binary fields. These tests were done
with large parameters, and we had to supplement the test results with certain arguments
before being able to claim advantage in the total DLP solving time. In particular, the collision
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Table 4 Time spent on random walks until collision detection and their ratios, measured on 51-bit order
subgroups of F×2n

n 1024 2048 3072

FP 176.0 sec 432.5 sec 808.4 sec
F20 170.3 sec 514.5 sec 978.7 sec

F4,30, F4,80, F4,80 12.5 sec 23.4 sec 38.8 sec
F8,19, F8,19, F8,18 24.4 sec 49.9 sec 80.6 sec

FP / (F4,30, F4,80, F4,80) 14.1 18.5 20.8
F20 / (F4,30, F4,80, F4,80) 13.6 22.0 25.2
FP / (F8,19, F8,19, F8,18) 7.2 8.7 10.0

F20 / (F8,19, F8,19, F8,18) 7.0 10.3 12.1

detection mechanism of tag tracing was not tested. To fully verify that tag tracing performs
as expected, we ran complete DLP solving tests on small groups. Tag tracing was set to use
the distinguished path segment approach and the other two algorithms were set to use the
original distinguished point method.

As before, every combination of

(r,n) ∈ {4,8}×{1024,2048,3072}

was tried with
t= log2 r,

but the group size was now always set to 51-bit primes. The multiplier product length ℓ was
fixed as follows, depending on r and n.

n 1024 2048 3072

r = 4 case 30 80 80
r = 8 case 19 19 18

As can be observed in Table 3, these are the optimal ℓ values among those within our re-
source constraints, for each of the six parameter setups.

We measured the time spent by each algorithm in traveling the random walk until the
solution to the DLP was returned. These measurements were averaged over 100 randomly
generated starting points and multiplier sets, and the results are summarized in Table 4. The
test results agree with our previous argument that the rho algorithm is comparable to or faster
than the 20-adding walk in solving DLPs on binary fields. One can also see that tag tracing
with r = 4 is 13.6, 18.5, and 20.8 times faster than existing algorithms on binary fields of
extension degrees 1024, 2048, and 3072, respectively. These figures are not too different
from the 13.0, 17.3, and 21.3 factor advantages previously predicted in Section 5.4.1, for
large groups.

We must admit that the figures in Table 4 for tag tracing do not contain the time spent on
preparation of the table Mℓ, and that we had intentionally stated the figures as the time spent
on random walks rather than as the DLP solving time. In fact, the above mentioned choices
for r and ℓ are such that

(r+ℓ
r

)
is somewhat close to

√
q ≈ 225.5, and the table preparation

time is not negligible in comparison to the random walk time. Hence, the claimed ratio of
the execution time is not the correct ratio of the full DLP solving time in the case of these
small groups. That said, we must note that the time for the preparation of Mℓ under a fixed r
and ℓ depends on the size of Fpn rather than on the order q of the target group and hence



29

should remain almost constant as q is increased. On the other hand, as discussed at the end
of Section 5.4.1, the random walk time of

√
q order quickly increases with q to the point

where the table preparation time becomes negligible in comparison. Since the random walk
time ratio should not change too much with q, the claimed performance ratio is correct as
the full DLP solving time ratio when the group size q is very large.

6 Application to Subgroups of Prime Fields

In this section, we show how to apply the tag tracing approach to subgroups of the prime
field and present some implementation results. Throughout this section, G is a prime order q
subgroup of the prime field Fp. While the ideas discussed in this section are simple, the
details are somewhat complicated, and we suggest that our readers understand Section 5
thoroughly before trying to understand these details.

We continue to use the notation modxy, introduced in the previous section, which signi-
fies the unique integer between 0 and x−1 congruent to y modulo x.

6.1 Overview

We first advise readers that almost every equation in this subsection is either incorrect or
correct only in a certain sense. They are to be understood as preliminary or approximate
versions of the correct equations that will appear in later subsections. Some of the variables
used in this subsection are fixed to explicit values, but these variables should be allowed to
vary, beginning with the next subsection.

Let us try to extend the tag tracing approach used with finite fields of large extension
degree to that on prime fields. To reduce the confusion between the two p’s appearing in Fpn

and Fp, in this subsection, we confine ourselves to the binary field F2n case whenever we refer
to arguments in the previous section that dealt with general finite fields of large extension
degrees.

We fix p to a prime of 1024-bit size. Suppose that we want a tag set of size w = 232.
In the binary field case, the tag was simply an appropriate number of the most significant
bits. One might try to apply the same approach to the prime field case by taking the most
significant 32 bits of the given prime field element, written in its binary expansion form, as
the tag, but a more careful analogue of (8) would be to define

tag-proposal(y) =
⌊

modpy
w̄

⌋
, where w̄ =

⌈ p
w

⌉
. (16)

For now, this will serve as our preliminary tag function definition. This definition will be
revised later in this subsection.

Our next goal is to compute the tag value of the product ym, where y and m are elements
of the prime field. Following the lines of argument given for the binary field case, we fix a
small positive integer u = 216 and write the element y = ∑63

i=0 yi ui in its u-ary expansion.
Note that the range of index i in this sum is bound by logu p ≈ 64. An (incorrect) analogue
of (9) might then be written as

modp(ym) = ∑
0≤i<64

yi modp(ui m). (17)
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After noting modp(ui m)=
⌊modp(ui m)

w̄

⌋
w̄+modw̄

(
modp(ui m)

)
, the above may equivalently

be stated as

modp(ym) = ∑
0≤i<64

yi

⌊
modp(ui m)

w̄

⌋
w̄+ ∑

0≤i<64
yi modw̄

(
modp(ui m)

)
, (18)

and we would like this to imply an analogue of (10), which might take the form⌊
modp(ym)

w̄

⌋
= ∑

0≤i<64
yi

⌊
modp(ui m)

w̄

⌋
. (19)

If this were true, the right-hand side could be used to define an auxiliary tag function that is
easy to compute. Unfortunately, none of the above three equations are correct.

There are two major problems. The first is that, contrary to the binary field case, it
is quite likely that the right-hand side integer sum of (17) will be larger than the mod-
ulus p. The summation result must be reduced modulo p for the equality to hold. The
second difficulty we face is somewhat similar to the first. The second summation term
∑i yi modw̄

(
modp(ui m)

)
appearing in (18) is likely to be larger than w̄, which implies that

even if (17), which is equivalent to (18), was true, our naive wish (19) would still be false.
The first of these two difficulties can surely be removed by applying a modp( ) operation

to the entire right-hand side of (17) or (18), but such an operation would be costly to com-
pute, unless p is of special form, and would also deter further development of arguments
toward (19). To resolve this, we first note that, although the second summation term of (18)
is greater than w̄, it is considerably smaller than p. Explicitly, we have

∑
0≤i<64

yi modw̄
(
modp(ui m)

)
< 64uw̄ = 222 w̄ ≈ 222 p

w
≈ p

210 . (20)

Since this is much smaller than the modulus p, the equality

modp(ym) = modp

(
∑

0≤i<64
yi

⌊
modp(ui m)

w̄

⌋
w̄

)
+ ∑

0≤i<64
yi modw̄

(
modp(ui m)

)
(21)

is likely to hold with good probability. The next step is to note that the definition of w̄ implies
a very good approximation p≈ ww̄, so that we have

modp(k w̄)≈modww̄(k w̄) =
{

modwk
}

w̄,

for any integer k. This observation allows us to modify (21) into

modp(ym)≈

{
modw

(
∑

0≤i<64
yi

⌊
modp(ui m)

w̄

⌋)}
w̄+ ∑

0≤i<64
yi modw̄

(
modp(ui m)

)
. (22)

We have arrived at a version of (18) that is likely to be correct, at the cost of a single
reduction modulo w = 232, which is much easier to compute than a modulo p reduction.

To remedy the second of our two difficulties, we determine how far past the w̄ boundary
the second sum of (22) can extend and then divide it out from both sides of (19). In more
explicit terms, after noting the 222w̄ bound that appeared in (20), we first divide both sides
of (22) by w̄ and then divide the quotient once more by t̄ = 222, and we can claim that⌊⌊

modp(ym)

w̄

⌋
1
t̄

⌋
≈

⌊{
modw

(
∑

0≤i<64
yi

⌊
modp(ui m)

w̄

⌋)}
1
t̄

⌋
(23)
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w = 232

t = 210t̄ = 222

r = 4r̄ = 28d = 26u = 216

Fig. 1 Example tag tracing parameters for 1024-bit prime fields

is likely to hold true. Our definition of tag function is revised accordingly to

tag-proposal(y) =
⌊⌊

modpy
w̄

⌋
1
t̄

⌋
. (24)

For our specific parameter setting, this definition produces 10-bit tags.
Note that even if (22) was an exact identity, our solution to the second problem works

only probabilistically, because carries may ripple upward to even the most significant parts
when the two right-hand side terms of (22) are added.

The right-hand side of formula (23) is easy to compute when pre-computed
⌊modp(ui m)

w̄

⌋
values are provided, since the integer products involved in the computation are of small
numbers. The auxiliary tag function can now be defined based on the right-hand side of (23).
Any error hidden in the approximation notation needs to be filtered out through the projec-
tion function.

6.2 Tag Tracing Setting

Let us now present the correct versions of the various functions that need to be provided for
tag tracing on a prime field. We ask readers to mentally set aside all explicit formulas given
in the previous subsection and to instead retain only the basic ideas.

6.2.1 Parameter setup

We fix the index set size r and the multiplier product length ℓ in such a way that the time
and storage complexities given by Lemma 2 and Lemma 3 are manageable and are also
insignificant in comparison to

√
q. The tag set T = {0,1,2, . . . , t−1} is taken to be of size

t = r r̄, a multiple of r. Next, we take a positive integer u and set d = ⌈logu(p−1)⌉. Finally,
we choose an integer t̄ > d(u−1). We fix the notation w = t t̄ and assume that all parameters
have been chosen in such a way that w < p

1
3 .

The optimal choices for these parameters will depend on many factors, including the
size of prime p, the resources available, and the speed of large integer multiplications. The
parameter set given in Figure 1 may be appropriate for use on a modern PC when the prime p
is of 1024-bit size. Readers may keep this parameter set example in mind to facilitate their
understanding of the further material in this section.

Even though our description of the parameter set began with the smallest integer r and
ended at the larger integer w, in practice, the choices are not so straightforward. The most
computationally intensive operation for tag tracing on prime fields will be integer multipli-
cation modulo w. Hence a natural choice for w is to match it to the word size of the intended
implementation platform. The parameters r, r̄, and u need to be chosen so that they all fit,
together with d ≈ logu p, inside w.
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We have already mentioned in Section 4.5 that a small r is likely to be desirable, and
hence r = 4 or r = 8 will be good choices. Recall that τ̄ is designed to be almost a function
of the product of its two given inputs and that any existing fluctuations are to be filtered
out by σ̄ in creating the reliable index s̄. The ratio r̄ between tag size t and index size r
is a measure of the buffer size that can distill the unreliability and is inversely correlated
to the Pfail term of (6). The parameter d, which is determined by the choice of u, will be
the number of the aforementioned modulo w multiplications that are required on each tag
tracing iteration. Hence, it is desirable to make both r̄ and u large, and since they need to fit
within w, one must decide on a suitable balance between the two.

6.2.2 Tag function

Let us set w̄ =
⌈ p

w

⌉
and summarize the notation given so far as rr̄ = t, tt̄ = w, ww̄ ≈ p,

d ≈ logu p, and t̄ ≈ du. Define the tag function τ : G→T = {0,1, . . . , t−1} as

τ(y) =
⌊

modp y
t̄ w̄

⌋
. (25)

Since 0≤ ww̄− p implies p−1
t̄w̄ < w

t̄ = t, we know that the above quotient does lie in T . For
later use, we briefly note that the definition of w̄ implies

ww̄− p < w. (26)

We also remark that our assumption of w < p
1
3 , given in Section 6.2.1, implies p

2
3 < w̄, and

thus
w2 < w̄. (27)

The projection σ : T →S = {0,1, . . . ,r−1} is defined as

σ(x) =
⌊x

r̄

⌋
(28)

and this fixes the index function s = σ ◦ τ : G→S . The following proposition shows that
we can expect this to be roughly pre-image uniform.

Proposition 1 Assuming that the elements of G are randomly distributed over Fp, we can
expect the index function s to be roughly pre-image uniform in the sense that∣∣∣∣∣Prob[s(y) = i for random y ∈ G ]

−Prob[s(y) = j for random y ∈ G ]

∣∣∣∣∣ < w
p

<
1

p
2
3

for any i, j ∈S .

Proof Let us view τ and s = σ ◦ τ as having been defined on all of Fp, rather than on
just G ⊂ F×p . Note that ε := t · t̄w̄− p = ww̄− p < w = t̄t < t̄w̄. This implies that for each
fixed k = 0, . . . , t−2, there are exactly t̄w̄ elements 0 ≤ y < p with τ(y) = k and that there
are t̄w̄− ε elements satisfying τ(y) = t−1.

In terms of the index values, since t = r r̄, this implies that for each fixed i = 0, . . . ,r−2,
there are exactly r̄t̄w̄ elements 0 ≤ y < p with s(y) = i and that there are r̄t̄w̄− ε elements
satisfying s(y) = r−1. Thus, the maximal difference between the pre-image sizes of s is ε .
The difference between the image probabilities of s, as a function defined on all of Fp, can
now be seen to be at most ε

p < w
p . Assuming that G is randomly distributed within Fp, one

may say the same for G. The final inequality follows from the assumption w < p
1
3 . ⊓⊔
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After reading the proof of this proposition, it should be clear that the index function
s = σ ◦ τ may directly be computed through

s(y) =
⌊

modpy
r̄ t̄ w̄

⌋
. (29)

6.2.3 Auxiliary functions

We should now construct the auxiliary index function s̄ : G×Mℓ → T ∪{fail}, which is
essentially equal to s.

Let us present a given y ∈ Fp in its u-ary expansion. Specifically, we can always write

modp y =
d−1

∑
i=0

yi ui

with each 0≤ yi < u. The definition of d = ⌈logu(p−1)⌉ clearly implies that the range for
the summation index should be as given here. Next, for each 0≤ i≤ d−1 and any m ∈ Fp,
we can write

modp uim = m̂iw̄+ m̌i (30)

with 0 ≤ m̂i ≤ p−1
w̄ < w and 0 ≤ m̌i < w̄. The right-hand side is the result of usual integer

division with remainder of modpuim by w̄. Using this notation, we define the auxiliary tag
function τ̄ : G×Mℓ→T to be

τ̄(y,m) =

⌊
modw ∑d−1

i=0 yim̂i

t̄

⌋
. (31)

Readers may notice that this is the right-hand side of (23). Since w = t t̄, it is clear that each
computed quotient lies in T .

Let us check how close τ̄(y,m) and τ(ym) are to each other.

Lemma 4 For any y,m ∈ Fp, the tag value τ(ym) for the product is equal to either τ̄(y,m)
or modt(τ̄(y,m)+1).

Proof Noting that w> t̄, given any integer k, we can perform integer division with remainder
of k by w, and then divide the obtained remainder once more by t̄ to write

k = k2w+ k3, where k2 =

⌊
k
w

⌋
and k3 = k−

⌊
k
w

⌋
w < w, and

k = k2w+ k1t̄ + k0, where k1 =

⌊
k3

t̄

⌋
and k0 = k3−

⌊
k3

t̄

⌋
t̄ < t̄.

We use this observation to write

d−1

∑
i=0

yim̂i = c2w+ c1t̄ + c0,

where c1t̄ + c0 < w and c0 < t̄. It should be clear from definition (31) that τ̄(y,m) = c1.
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In the notation used in defining τ̄(y,m), we may write

ym =
d−1

∑
i=0

yiuim≡
(d−1

∑
i=0

yim̂i

)
w̄+

d−1

∑
i=0

yim̌i (mod p)

≡ c1t̄w̄+ c0w̄+ c2(ww̄− p)+
d−1

∑
i=0

yim̌i (mod p). (32)

After noting

c2 =

⌊
∑d−1

i=0 yim̂i

w

⌋
≤ d(u−1)(w−1)

w
< d(u−1) ≤ t̄−1

and
d−1

∑
i=0

yim̌i < d(u−1)(w̄−1) < (t̄−1)w̄,

we can use the relation (26) to bound the smaller terms of (32) by

c0w̄+ c2(ww̄− p)+
d−1

∑
i=0

yim̌i < (t̄−1)w̄+(t̄−1)w+(t̄−1)w̄ = (2t̄w̄−w)+(t̄w−2w̄).

Since (27) shows t̄w < tt̄w = w2 < 2w̄, we may conclude

0 ≤ c0w̄+ c2(ww̄− p)+
d−1

∑
i=0

yim̌i < 2t̄w̄−w. (33)

Recall that c1 = τ̄(y,m), as an element of the tag set, must be less than or equal to t−1.
Let us temporarily restrict ourselves to the case in which c1 is strictly less than t−1. In this
case, we have

ym≡ c1t̄w̄+ c0w̄+ c2(ww̄− p)+
d−1

∑
i=0

yim̌i (mod p)

< (t−2)t̄w̄+(2t̄w̄−w) = ww̄−w < p,

which implies

modp ym = c1t̄w̄+
{

c0w̄+ c2(ww̄− p)+
d−1

∑
i=0

yim̌i

}
. (34)

Recalling the definition of the tag function given by (25), let us note that τ(ym) is the
quotient obtained by performing integer division of the above value by t̄w̄. Let us temporar-
ily denote the sum of terms inside the braces of (34) by {⋆}. Since (33) has shown the
non-negative integer value {⋆} to be strictly less than 2t̄w̄, when integer division by t̄w̄ is
performed on the right-hand side of (34), the quotient will be either c1 or c1 + 1. Here, the
outcome will depend on whether 0 ≤ {⋆} < t̄w̄ or t̄w̄ ≤ {⋆} < 2t̄w̄. We have shown that
τ(ym) is either τ̄(y,m) or τ̄(y,m)+1, when τ̄(y,m)< t−1.

It remains to consider the case of c1 = t−1. If the value (32) happens to be strictly less
than p, then (34) holds, and since the term within the braces is non-negative with t− 1 =
c1 ≤ τ(ym)≤ t−1, we must have τ(ym) = c1. Otherwise, we can use (33) and (26) to write

p ≤ value given by (32) < (t−1)t̄w̄+2t̄w̄−w = ww̄−w+ t̄w̄ < p+ t̄w̄.

This shows that modp ym is equal to the right-hand side of (34) minus p, which becomes
strictly less than t̄w̄, and so τ(ym) = 0≡ c1 +1 (mod t). ⊓⊔
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We now define σ̄ : T →S ∪{fail} as follows.

σ̄(x) =

{
fail if x≡−1 mod r̄,
⌊ x

r̄ ⌋ otherwise.
(35)

It is easy to show that s̄ = σ̄ ◦ τ̄ produces s = σ ◦ τ values, whenever it does not fail.

Proposition 2 When s̄(y,m) ̸= fail, we have s̄(y,m) = s(ym).

Proof It is clear that ⌊ k
r̄ ⌋= ⌊

modt (k+1)
r̄ ⌋ for any k ∈T , unless k≡−1 mod r̄. Hence, for any

y,m ∈ G such that τ̄(y,m) ̸≡ −1 mod r̄, we have

s̄(y,m) =

⌊
τ̄(y,m)

r̄

⌋
=

⌊
modt(τ̄(y,m)+1)

r̄

⌋
.

Since we know from Lemma 4 that either τ̄(y,m) or modt(τ̄(y,m)+1) is equal to τ(ym),
the above equal values must also be identical to ⌊ τ(ym)

r̄ ⌋= s(ym). ⊓⊔

The definitions of tag and auxiliary tag functions for the prime field case are more com-
plicated than what we saw for the finite fields of large extension degrees. This is due to the
presence of additive carries which does not appear with the polynomial basis representation
for finite fields of large extension degrees.

6.3 Tag Tracing

We are now ready to begin tag tracing on subgroups of the prime field.

6.3.1 Tag tracing iterations

Using the proof of Lemma 3 appearing in Section 4.2.1 as a construction guide, we build the
table Mℓ. Recall from Section 4.2.3 that each table entry was to consist of three components.
These are the multiplier combination information, the group element, and the exponent in-
formation. For each m ∈Mℓ, we add the following fourth component to each table entry.(⌊

modp(u0m)

w̄

⌋
,

⌊
modp(u1m)

w̄

⌋
, . . . ,

⌊
modp(ud−1m)

w̄

⌋)
(36)

Notice that these are the m̂i appearing in (30) and that they are analogous to (12) used for
finite fields of large extension degrees.

We can now follow the discussion in Section 4.2.3 to step through each iteration of
tag tracing. The elements of G are written in u-ary representation so that we may quickly
compute the index s, based on Proposition 2 and using equations (31) and (35). Note that
as long as u is a power of 2, the u-ary representation will not slow down the occasional full
product computations inordinately. In fact, for software implementations, if w corresponds
to the natural word size of the implementation platform and the length of u matches a byte
boundary, we can use type castings to almost remove the cost of conversions between w-ary
and u-ary representations of any group element.

The distinguishing property for collision detection may be set as explained in Sec-
tion 4.3.1. With the distinguished path segment approach, full products are required every
time we reach ℓ iterations, or when we have an s̄ calculation failure, or when the current point
is found to be a distinguished point. The path segment approach is an effective collision de-
tection method in the sense that it does not necessitate any extra full product computation.
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6.3.2 Time complexity

Let us use the notation Mul(k) for the cost of multiplication modulo an integer of k-bit size
and write VxW for the bit length of an integer x.

From equations (31) and (35), we can see that the cost of evaluating the auxiliary in-
dex function s̄ is d multiplications modulo w, d− 1 additions modulo w, and two integer
divisions. Thus, ignoring the small fixed number of divisions and the relatively cheaper
additions, we can say that the s̄ evaluation cost is approximately d Mul(VwW). Further, on
the basis of definitions (31) and (35), we can reasonably claim that the probability of the
auxiliary index function s̄ returning failure is 1

r̄ .
Gathering the above mentioned arguments and recalling (5), we can write the time com-

plexity of tag tracing in solving a DLP on prime order subgroups of the prime field as{
d Mul(VwW)+(1

ℓ
+

1
r̄
+

1
∆

)
Mul(VpW)}{ρr +∆

}
, (37)

where ρr denotes the expected rho length of an r-adding walk. For example, if we takeVpW = 1024, together with the parameters given in Figure 1, and assume Mul(k) = k2, this
complexity would be

{
216 +

( 1
ℓ +

1
28 +

1
∆
)
220
}{

ρr +∆
}

.
One may want to be slightly more precise when considering dedicated hardware imple-

mentations. The multiplication that we argued as costing Mul(VwW) is performed between
a VwW-bit integer and a VuW-bit integer. This can be cheaper than an arbitrary integer mul-
tiplication between two VwW-bit integers. Furthermore, since we only require the outcome
reduced modulo w, if w is taken to be a power of 2, the significant bits of the integer product
simply do not need to be computed. This is in contrast to modulo p reductions, which is
much more complicated.

6.3.3 Alternative distinguished point definition

While the distinguished path segment approach to distinguished points given in Section 4.3.1
works efficiently for the current situation, we discuss application of the distinguished point
approach given in Section 4.3.3 to provide an example of its usage.

We redefine σ̄ : T →S ∪{fail} of (35) to

σ̄(x) =


fail if x = 0,
fail if x≡-1 mod r̄,
⌊ x

r̄ ⌋ otherwise.

It is evident that s̄ = σ̄ ◦ τ̄ still agrees with the index s values, when it does not fail. A point
y ∈ G is defined to be a distinguished point if τ(y) = 0 and if, in addition, a certain fixed
number of its least significant bits are zero. We use the LSBs rather than the MSBs for the
extra condition, since the MSBs could somehow be correlated to the tag values as given
by (25), and hence the use of the LSBs will allow for easier control over the probability of
distinguished point occurrences.

It can be seen from Proposition 2 that for the event τ(gim) = 0 to take place, we must
have either τ̄(gi,m) = t− 1 or τ̄(gi,m) = 0. Hence g j = gim can be a distinguished point
only when τ̄(gi,m) fails, and in such a case the full product g j is available. This approach is
slightly less efficient than the distinguished path segment approach, since we had to impair s̄
into giving more failure returns.
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6.4 Asymptotic Complexity

As in Section 5.3, let us consider the asymptotic complexity of tag tracing on subgroups of
the prime field as the base field size p is increased, while the group size q is kept fixed. Based
on Table 2, we may claim that the asymptotic behavior of tag tracing under an increase in
group size q is likely to be O(

√
q) when r ≥ 4 is used, but this subsection considers the

asymptotic behavior of tag tracing when the size of the finite field containing the group,
rather than the size of the group, is increased.

Let us first slightly simplify the complexity of tag tracing given by (37).

Lemma 5 Suppose that the parameters for tag tracing that is based on r-adding walks are
chosen in such a way that ℓ ≈ r̄ and d = O(r̄) and that the average distance ∆ between
distinguished points is set to satisfy ρr

∆ = O(1). Then the time complexity of tag tracing in
solving a single DLP on a cyclic subgroup of F×p is

O(d)Mul(VwW)ρr +O(1)Mul(VpW).
Proof The computation that is expected to be consumed by tag tracing until the DLP solu-
tion is returned is given by (37). Under the ρr

∆ = O(1) condition, we can write

Mul(VpW)
∆

(
ρr +∆

)
= O(1)Mul(VpW)

concerning the final term. To deal with the other three terms, we note that ρr +∆ ≤ 2ρr,
under the ρr

∆ = O(1) condition. The computational complexity must thus be at most{
d Mul(VwW)+ O(1)

r̄
Mul(VpW)}2ρr +O(1)Mul(VpW), (38)

where we have additionally applied ℓ≈ r̄.
We now focus on the O(1)

r̄ Mul(VpW) term. Since we always have VuW ≤ VwW and since
Mul( ) is at most quadratic in its input, we have

1
r̄

Mul(VpW)≤ 1
r̄

Mul
(VpWVuW ·VwW)≈ 1

r̄
Mul(d VwW)≤ d

r̄
d Mul(VwW).

Hence, under the condition d = O(r̄), the term O(1)
r̄ Mul(VpW) must be O(d)Mul(VwW). Our

claim is now evident from (38). ⊓⊔

The complexity of a single r-adding iteration, in the original style, is typically quadratic
in VpW, because the complexity of a single multiplication in the prime field Fp is typically
quadratic. Let us show that one can run a single iteration of tag tracing with O(VpW logVpW)
complexity.4

Proposition 3 The parameters for tag tracing can be chosen so that, on prime order q
subgroups of F×p , the time complexity of tag tracing in solving a single DLP is

O(VpW logVpW)ρr +O(1)Mul(VpW).
When the FFT method of field multiplication, which is asymptotically faster than classical
methods, is used, the above can be reduced to

O(VpW log logVpW)ρr +O(1)Mul(VpW).
4 The linear complexity claim made in our earlier paper [4] was erroneous. In the notation of [4], we

overlooked the fact that the size of ω1 depended on p.
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Proof We fix r to a small positive integer and let the other parameters depend on p through
the relations ℓ = r̄ = u = VpW and t̄ = du. It is then easy to check that d ≈ log p

logu ≤ log p, so
that

w = r r̄ d u = O
(
(log p)3).

This implies that the condition w < p
1
3 , which needs to be satisfied by any parameter set, is

met when p is sufficiently large.
Since the conditions d = O(r̄) and ℓ= r̄ of Lemma 5 are trivially satisfied by our choice

of parameters, after additionally setting ρr
∆ = O(1), we obtain

O(d)Mul(VwW)ρr +O(1)Mul(VpW)
as the computational complexity. To prove our claim, it suffices to make d Mul(VwW) more
specific.

It is easy to check that VdW≈ log log p
logu ≤ logVpW≈ VuW, so that

VwW≤ VrW+Vr̄W+VdW+VuW = O(VuW),
and we can write

d Mul(VwW)≈ VpWVuW Mul(VwW) = VpWVuW O
(

Mul(VuW)).
Finally, since Mul( ) is at most quadratic in its input, we have

d Mul(VwW) = O(VpWVuW) = O(VpW logVpW),
which directly implies our first claim. Then, when the FFT method of product computa-
tion [27], which gives complexity Mul(k) = k logk, is used, we arrive at

d Mul(VwW) = O(VpW logVuW) = O(VpW log logVpW).
This brings about our second claim. ⊓⊔

The O(1) factor in front of Mul(VpW) is roughly the number of distinguished points
one is willing to manage, and this can only be much smaller than ρr. Hence, in practice,
the first term O(VpW logVpW)ρr, rather than the O(1)Mul(VpW) term, is the dominating term.
Furthermore, the smaller second term may be replaced by a single solution verification ex-
ponentiation if the approach of Section 4.3.4 is taken. We may state that if we exclude a
finite number of full group operations, the complexity of tag tracing is O

(VpW logVpW) on
groups of fixed size. Unlike what we saw in Section 5.3, this is no longer linear in the field
size VpW, but still close to being linear.

The storage complexity remains to be evaluated. Of the four components that constitute
each entry of the table Mℓ, which was explained in Section 6.3.1, the full group element
expression requires VpW bits and the fourth component requires d VwW bits. The other two
components are smaller or do not depend on p. If the parameters taken for the proof of
Proposition 3 are used, we already know that VwW = O(VuW). Since d ≈ VpWVuW , we may state
that the storage requirement in bits is bounded by{

(number of entries in Ml)

× (bit-size of each entry)

}
=

(
ℓ+ r

r

)(VpW+dVwW)=(ℓ+ r
r

)
O(VpW) = O

(
ℓr VpW),

and this is O(VpWr+1), when ℓ≈ VpW.
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In summary, as p is increased and q is fixed, tag tracing runs at O
(VpW logVpW) time

complexity. The reduction that is obtained as compared to the original r-adding walk, which
typically runs at O(VpW2) time complexity, is achieved at the cost of storage of polynomial
complexity O(VpWr+1). The use of seemly larger storage is justifiable in practice, as it is
much smaller than the effective time complexity of O

(VpW logVpW)ρr.

6.5 Implementation of Tag Tracing on Prime Fields

Let us present the test results of running tag tracing on prime order subgroups of F×p and
compare them with Pollard’s original iteration function and the 20-adding walk. The im-
plementation platform that we used is identical to the one used in binary field experiments.
As before, we used the distinguished path segment approach for collision detection with tag
tracing and the original distinguished point method with the other two algorithms. The prime
field arithmetics functions of the NTL library [30] were used for any full group operation,
so that the results would not be biased toward tag tracing. Throughout the test, whenever
random primes p and q, together with a cyclic group of order q, were needed, they were
generated in the style specified for DSA [18].

6.5.1 Speed comparisons on large groups

We test the performance of tag tracing on subgroups of prime fields used today and com-
pare it with the performance of other algorithms. Since fully solving even a single DLP on
practical parameters is far from possible with our resources, we measured the average time
required per function iteration by each algorithm and accounted for the differences in the
expected rho lengths to arrive at a claim concerning the ratio of full DLP solving time.

Referencing the recommendations of [19], we can see that primes p and q of sizes such
that (VpW,VqW) ∈ {(1024,160), (2048,224), (3072,256)

}
are of interest. Our tests were conducted on all three parameter sets. The parameters for tag
tracing, set size r and modulus w, were set up by taking every combination of

(r, w) ∈
{

4,8
}
×
{

232,264},
and fixing the other parameters to

u =
√

w, t̄ = 2⌈log2 d u⌉, t =
w
t̄
, and r̄ =

t
r
,

for each chosen combination of r and w. We also used different ℓ’s for each of the described
parameter sets. Our primitive data structuring for table Mℓ and the size of online memory
available to us restricted the range of ℓ that we could use, especially for the r = 8 cases.

We ran Pollard’s original iteration function, the unmodified 20-adding walk, and tag
tracing over various parameter sets, each for 108 iterations, and measured the execution time.
Each test started from a fresh set of randomly chosen primes p and q, group generator g,
DLP target h, multipliers mi, and initial point g0. Each parameter set was run 100 times and
the measured timings were averaged.

All timing results are given in Table 5. As in Section 5.4.1, each row labeled as Fr,ℓ
corresponds to tag tracing that is based on an r-adding walk with the multiplier product
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Table 5 Average timings for 108 iterations of various iteration functions, measured on prime q order sub-
groups of F×p (Unit: second; Time taken for the pre-computation of Mℓ are given in parentheses)

(VpW,VqW) (1024,160) (2048,224) (3072,256)
w for tag tracing 232 264 232 264 232 264

FP 379.1 1237.4 2614.6
F20 403.7 1304.6 2731.0

F4,10
58.1 55.0 165.4 157.0 340.7 310.9

(0.21) (0.11) (1.15) (0.60) (3.40) (1.73)

F4,20
33.5 30.5 93.8 83.9 194.8 164.5

(2.33) (1.18) (12.2) (6.36) (36.1) (18.5)

F4,30
27.1 24.1 73.1 63.5 150.9 120.3

(9.96) (5.14) (53.4) (27.7) (158.3) (80.6)

F4,40
25.3 22.8 64.2 55.1 129.7 99.5

(29.1) (15.0) (156.4) (81.3) (461.0) (235.7)

F4,50
25.1 22.6 59.4 50.4 117.7 87.6

(68.3) (35.0) (364.3) (189.0) (1074.5) (549.0)

F4,60
25.2 23.0 56.4 48.0 110.3 79.8

(136.4) (70.2) (732.5) (380.5) (2165.9) (1104.0)

F4,70
25.7 23.4 54.7 46.0 104.8 74.7

(248.2) (128.3) (1327.2) (688.8) (3910.0) (1999.2)

F4,80
26.0 23.9 53.3 44.7 101.6 70.5

(416.3) (215.6) (2224.0) (1153.6) (6563.0) (3349.8)

F4,90
26.4 24.3 52.5 43.9 99.2 67.4

(654.5) (335.5) (3518.5) (1833.5) (10468.0) (5270.8)

F4,100
26.9 24.9 50.6 43.0 − −(987.8) (509.5) (5379.9) (2751.8)

F8,10
66.7 65.8 183.6 175.4 374.4 341.1
(9.5) (4.9) (50.7) (26.1) (148.8) (76.7)

F8,19
54.3 52.8 127.4 116.5 250.3 207.4

(473.7) (243.2) (2607.5) (1313.9) (7541) (3880.8)

F8,20
53.9 52.8 121.7 111.9 − −(668.0) (346.3) (3612.4) (1864.9)

length set to ℓ, and the values in parentheses are the time taken for the preparation of the
table Mℓ.

The table shows that Pollard’s iteration function FP is faster than the 20-adding walk
function F20. However, as was stated through (7), the rho length of FP is likely to be longer
than that of F20 by a factor of ρP

ρ20
≈ 1.25. When this is taken into account, we can expect the

20-adding walk to solve DLPs faster than the rho method. Hence we choose to compare tag
tracing with the unmodified 20-adding walk rather than with the rho algorithm.

Let us discuss the measurements obtained for tag tracing. Examining the data for the
(VpW,VqW) = (1024,160), w = 232, and r = 4 case, we see that the 108 iteration timing is
smallest at ℓ= 50. To understand this, we use the corresponding parameters u = 216, d = 64,
t̄ = 222, t = 210, and r̄ = 28 to rewrite the DLP solving time complexity (37) as{

64Mul(32)+
(1
ℓ
+

1
28 +

1
∆

)
Mul(1024)

}{
ρ4 +∆

}
.

Assuming Mul(k) = k2, the complexity of a single iteration may be written as

216 +
(1
ℓ
+

1
28 +

1
∆

)
220
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Thus, at very small ℓ, the 1
ℓ 220 term dominates the 216 term and increasing ℓ leads to a direct

reduction of the execution time. At ℓ= 16 the domination shifts to the 216 term and the act
of increasing ℓ begins to gradually lose its effectiveness. Still, the execution time reduction
continues until the disadvantage of increased table lookup time outweighs the theoretical
speedup.

For the (VpW,VqW) = (1024,160) DLP environment, tag tracing was at its best with r = 4,
w = 264, and ℓ = 50, achieving a speed of 22.6 seconds per 108 iterations. In compari-
son, the unmodified 20-adding walk required 403.7 seconds per 108 iterations. Recalling
from (7) that the 4-adding walk is likely to yield a rho length that is approximately 1.31
times that of the 20-adding walk, we can state that a DLP is likely to be solved approxi-
mately 403.7

22.6
1

1.31 ≈ 13.6 times faster by tag tracing with r = 4 than by the original 20-adding
walk. Corresponding speed ratios between 20-adding walks and tag tracing at r = 4, for the
DLP environments VpW = 2048 and VpW = 3072, are 23.3 and 31.2, respectively. It seems
safe to claim that tag tracing achieves over 10, 20, and 30 times speedup of DLP solving
on subgroups of the prime field, when the bit size of the base field is 1024, 2048, and 3072,
respectively.

Tag tracing results with r = 8 were less satisfactory than those with r = 4, which seems
mostly due to our poor use of storage. Even in the r = 4 case, the available online memory
was the main restriction on the choice of ℓ, so a higher speedup than what we achieved
should be possible for the VpW = 2048 and VpW = 3072 cases with larger ℓ.

We have experienced through various tweaks that table lookups to Mℓ present a consid-
erable fraction of the time taken by each tag tracing iteration. Unlike our primitive testing,
large scale implementation of tag tracing would require the use of advanced hash table tech-
niques that allow constant time table lookups.

As discussed at the end of Section 5.4.1, the time required for the preparation of table Mℓ

can be safely ignored when discussing DLP solving time on large groups. Even though the
pre-computation timings listed in Table 5 are not small, they will be negligible in comparison
to the full DLP solving time if the 108 iteration timings are scaled to the number of required
iterations expected for a large group.

6.5.2 DLP solving on small groups

To verify that tag tracing is fully operational, we ran full DLP solving tests on groups of
small prime size q, where VqW = 50. The DLP environment was fixed by choosing prime p
that satisfy VpW ∈ {1024,2048,3072}.

For tag tracing, the two choices
r ∈ {4,8}

were used. The other parameters were fixed to

w = 264, u = 232, t̄ = 2⌈log2 d u⌉, t = w/t̄, and r̄ = t/r.

The choice of ℓ was made as follows, according to the data collected in Table 5.

VpW 1024 2048 3072

r = 4 case 50 100 90
r = 8 case 19 20 19
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Table 6 Time spent on random walks until collision detection, measured on 50-bit order subgroups of F×p

VpW 1024 2048 3072

FP 178.36 sec 619.91 sec 1395.41 sec
F20 152.43 sec 474.12 sec 1068.25 sec

F4,50, F4,100, F4,90 11.93 sec 22.17 sec 33.51 sec
F8,19, F8,20, F8,19 21.3 sec 47.2 sec 80.7 sec

FP / (F4,50, F4,100, F4,90) 14.95 27.96 41.64
F20 / (F4,50, F4,100, F4,90) 12.78 21.39 31.88
FP / (F8,19, F8,20, F8,19) 8.4 13.1 17.3
F20 / (F8,19, F8,20, F8,19) 7.2 10.0 13.2

For each prime field size and the choice of r = 4 or r = 8, the chosen ℓ is the optimal value
among those we had tried for large groups.

We measured the time that each algorithm spent traveling the random walk until the
solution to the DLP was returned. This was then averaged over 100 randomly generated
starting points and multiplier sets, with a fixed but randomly selected pair of p and q. The
results are summarized in Table 6. Tag tracing is faster than the existing algorithms by
factors of approximately 12.8, 21.4, and 31.9 on prime fields of sizes 1024, 2048, and 3072,
respectively. These factors lie within the the range as stated in Section 6.5.1 for large groups.
We can safely claim that tag tracing is more than 10, 20, and 30 times faster than existing
algorithms on prime fields of bit sizes 1024, 2048, and 3072, respectively.

As before, the figures in Table 6 for tag tracing do not contain the time spent on creation
of the table Mℓ. In fact, the above mentioned choices for r and ℓ are such that

(r+ℓ
r

)
is

somewhat close to
√

q ≈ 225 and the table preparation time is not negligible with respect
to the random walk time. Hence, the ratio of execution time that we claimed is not of the
ratio of the full DLP solving time on these small groups. Still, as was discussed at the end
of 5.4.1, the preparation time of Mℓ quickly becomes negligible in comparison to the full
DLP solving time as the group size q is increased. Hence our time ratio claims are valid as
full DLP solving time ratios when the group size q is large.

7 Conclusion

The main subject of this paper was the r-adding walk style of random walk generation and
the distinguished point collision detection method used in DLP solving algorithms. We first
noted that the essential decision made at each iteration of the r-adding walk depended on
a very small amount of information. This allowed us to present tag tracing, a framework
under which the group operations to be performed at each iteration could be postponed and
gathered, to be processed later in a single step with the help of a pre-computed table. We also
developed an extension of the distinguished point method for the tag tracing framework.

Concrete construction of tag tracing for prime order subgroups of finite fields were pre-
sented. We showed that it was possible to compute a small number of bits of the product
of a random element and a preset element from a finite field in a considerably shorter time
than that required for computing the full product. This translates to tag tracing being faster
than the original r-adding walks. In the case of finite fields of large extension degrees, the
speedup achieved was linear in the encoding length of the field elements, and in the case of
prime fields, the speedup was almost linear. These complexity advantage claims are not just
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theoretical, as was confirmed by our implementations that showed practical improvements
over the original algorithms.

The recent work [2] applies tag tracing to elliptic curve groups and reports a rather small
speedup factor of 1.2. Their approach was to compute just the x-coordinates during the tag
tracing steps. It would be interesting to see if approaches that yield better results can be
found, even though the complicated structure of the group operation on elliptic curves makes
an efficient tag tracing construction much harder to find than in the case of finite fields.
Combining tag tracing with the technique used for groups with fast endomorphisms [7, 10,
12, 34] also needs to be considered, although this does not appear to be easy. Applying tag
tracing to other structures where DLP is considered, such as ideal class groups and abelian
varieties, would be another direction for further research.
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