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ABSTRACT: A set A of non-negative integers is called a Sidon set if all the sums a1+a2, with a1 ≤ a2

and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the maximum
possible size F(n) of a Sidon subset of [n] = {0, 1, . . . , n − 1}. Results of Chowla, Erdős, Singer and
Turán from the 1940s give that F(n) = (1 + o(1))

√
n. We study Sidon subsets of sparse random sets

of integers, replacing the ‘dense environment’ [n] by a sparse, random subset R of [n], and ask how
large a subset S ⊂ R can be, if we require that S should be a Sidon set.

Let R = [n]m be a random subset of [n] of cardinality m = m(n), with all the
(n

m

)
subsets of [n]

equiprobable. We investigate the random variable F([n]m) = max |S|, where the maximum is taken
over all Sidon subsets S ⊂ [n]m, and obtain quite precise information on F([n]m) for the whole range
of m, as illustrated by the following abridged version of our results. Let 0 ≤ a ≤ 1 be a fixed constant
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2 KOHAYAKAWA ET AL.

and suppose m = m(n) = (1 + o(1))na. We show that there is a constant b = b(a) such that, almost
surely, we have F([n]m) = nb+o(1). As it turns out, the function b = b(a) is a continuous, piecewise
linear function of a that is non-differentiable at two ‘critical’ points: a = 1/3 and a = 2/3. Somewhat
surprisingly, between those two points, the function b = b(a) is constant.

Our approach is based on estimating the number of Sidon sets of a given cardinality contained
in [n]. Our estimates also directly address a problem raised by Cameron and Erdős (On the number of
sets of integers with various properties, Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990,
pp. 61–79). © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2013

Keywords: Sidon sets, random sets of integers, probabilistic extremal problems, additive combina-
torics

1. INTRODUCTION

Recent years have witnessed vigorous research in the classical area of additive combi-
natorics. An attractive feature of these developments is that applications in theoretical
computer science have motivated some of the striking research in the area (see, e.g., [35]).
For a modern treatment of the subject, the reader is referred to [34].

Among the best known concepts in additive number theory is the notion of a Sidon set.
A set A of non-negative integers is called a Sidon set if all the sums a1 + a2, with a1 ≤ a2

and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the
maximum possible size F(n) of a Sidon subset of [n] = {0, 1, . . . , n − 1}. In 1941, Erdős
and Turán [14] showed that F(n) ≤ √

n + O(n1/4). In 1944, Chowla [8] and Erdős [11],
independently of each other, observed that a result of Singer [32] implies that F(n) ≥√

n−O(n5/16). Consequently, it is known that F(n) = (1+o(1))
√

n. For a wealth of related
material, the reader is referred to the classical monograph of Halberstam and Roth [17] and
to a recent survey by O’Bryant [26] and the references therein.

We investigate Sidon sets contained in random sets of integers, and obtain essentially
tight bounds on their relative density. Our approach is based on finding upper bounds for the
number of Sidon sets of a given cardinality contained in [n]. Besides being the key to our
probabilistic results, our upper bounds also address a problem of Cameron and Erdős [7].

We discuss our bounds on the number of Sidon sets and our probabilistic results in the
next two subsections.

1.1. A Problem of Cameron and Erdó́s

Let Zn be the family of Sidon sets contained in [n]. Over two decades ago, Cameron and
Erdős [7] proposed the problem of estimating |Zn|. Observe that one trivially has

2F(n) ≤ |Zn| ≤
∑

0≤i≤F(n)

(
n

i

)
= n(1/2+o(1))

√
n. (1)

Cameron and Erdős [7] improved the lower bound in (1) by showing that lim supn |Zn|2−F(n) =
∞ and asked whether the upper bound could also be strengthened. Our result is as follows.

Theorem 1.1. There is a constant c for which |Zn| ≤ 2cF(n) for all large enough n.

Our proof method gives that the constant c in Theorem 1.1 may be taken to be arbitrarily
close to log2(32e) = 6.442 · · · . We do not make any attempts to optimize this constant as
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SIDON SETS IN RANDOM SETS OF INTEGERS 3

it seems that our approach cannot yield a sharp estimate for log2 |Zn| (in particular, we give
the proof for constants arbitrarily close to log2(33e) = 6.487 · · · ). Very recently, Saxton
and Thomason [30] derived Theorem 1.1 (for c arbitrarily close to 55) from a more general
theorem bounding the number of independent sets in certain hypergraphs. They also proved
that log2 |Zn| ≥ (1.16 + o(1))F(n).

1.2. Probabilistic Results

We investigate Sidon subsets of sparse, random sets of integers, that is, we replace the
‘environment’ [n] by a sparse, random subset R of [n], and ask how large a subset S ⊂ R
can be, if we require that S should be a Sidon set.

Investigating how classical extremal results in ‘dense’ environments transfer to ‘sparse’
settings has proved to be a deep line of research. A fascinating example along these lines
occurs in the celebrated work of Tao and Green [16], where Szemerédi’s classical theorem
on arithmetic progressions [33] is transferred to certain sparse, pseudorandom sets of inte-
gers and to the set of primes themselves (see [27, 28, 34] for more in this direction). Much
closer examples to our setting are a version of Roth’s theorem on 3-term arithmetic progres-
sions [29] for random subsets of integers [24], and the far reaching generalizations due to
Conlon and Gowers [9] and Schacht [31] (for details, the interested reader is referred to [9],
[31], [18, Chapter 8] and [22, Section 4]). Before we proceed, we mention that additive
properties of random sets of integers were already exploited by Erdős in the 50s to address
a problem due to Sidon [12, 13] (see also [17, Chapter III] and [34, Chapter 1]).

Let us now state a weak, but less technical version of our main probabilistic results.
Let F(R) = max |S|, where the maximum is taken over all Sidon subsets S ⊂ R. Let [n]m be
a random subset of [n] of cardinality m = m(n), with all the

(n
m

)
subsets of [n] equiprobable.

We are interested in the random variable F([n]m).
Standard methods give that, almost surely, that is, with probability tending to 1 as n → ∞,

we have F([n]m) = (1 − o(1))m if m = m(n) 	 n1/3 (here and throughout we write f 	 g
to mean f = o(g)). On the other hand, the results of Schacht [31] and Conlon and Gowers [9]
imply that, if m = m(n) 
 n1/3, then, almost surely, we have

F([n]m) = o(m). (2)

Thus F([n]m) undergoes a sudden change of behaviour at m = n1/3+o(1). The following
abridged version of our results already gives us quite precise information on F([n]m) for
the whole range of m.

Theorem 1.2. Let 0 ≤ a ≤ 1 be a fixed constant. Suppose m = m(n) = (1 + o(1))na.
There exists a constant b = b(a) such that almost surely

F([n]m) = nb+o(1). (3)

Furthermore,

b(a) =

⎧⎪⎨
⎪⎩

a if 0 ≤ a ≤ 1/3,

1/3 if 1/3 ≤ a ≤ 2/3,

a/2 if 2/3 ≤ a ≤ 1.

(4)

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 1. The graph of b = b(a).

Thus, the function b = b(a) is piecewise linear. The graph of b = b(a) is given in Fig. 1.
The point (a, b) = (1, 1/2) in the graph is clear from the Erdős–Turán and Chowla results
[8, 11, 14] mentioned above. The behaviour of b = b(a) in the interval 0 ≤ a ≤ 1/3 is
not hard to establish. The fact that the point (1/3, 1/3) could be an interesting point in the
graph is suggested by the results of Schacht [31] and Conlon and Gowers [9]. It is somewhat
surprising that, besides the point a = 1/3, there is a second value at which b = b(a) is
‘critical’, namely, a = 2/3. Finally, we find it rather interesting that b = b(a) should be
constant between those two critical points. We state our results in full in Section 2.1. Our
results in fact determine F([n]m) up to a constant multiplicative factor for m ≤ n2/3−δ for
any fixed δ > 0 and for m ≥ n2/3(log n)8/3. For the missing range of m, around n2/3, our
lower and upper bounds differ by a factor of O((log n)/ log log n).

2. MAIN RESULTS

2.1. Statement of the Main Results

We prove a more detailed result than Theorem 1.1. Let Zn(t) be the family of Sidon sets of
cardinality t contained in [n].

Theorem 2.1. Let 0 < σ < 1 be a real number. For any large enough n and t ≥ 2s0,
where s0 = (

2(1 − σ)−1n log n
)1/3

, we have

|Zn(t)| ≤ n3s0

(
32en

σ t2

)t

. (5)

Theorem 1.1 follows from Theorem 2.1 by summing over all t (see Section 3.2). Our
next result covers values of t smaller than the ones covered in Theorem 2.1.

Theorem 2.2. Let n and t be integers with

30n1/3 ≤ t ≤ 5(n log n)1/3. (6)

Random Structures and Algorithms DOI 10.1002/rsa
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Then

|Zn(t)| ≤
(

22n

t
exp

(
− t3

6 · 53n

))t

. (7)

Let us now turn to our probabilistic results. Instead of working with the uniform
model [n]m of random subsets of [n], it will be more convenient to work with the so called
binomial model [n]p, in which each element of [n] is put in [n]p with probability p, inde-
pendently of all other elements. Routine methods allow us to translate our results on [n]p

below to the corresponding results on [n]m, where p = m/n (see Section 2.2 for details).
We state our results on F([n]p) split into theorems covering different ranges of p = p(n).

Our first result corresponds to the range 0 ≤ a ≤ 1/3 in Theorem 1.2.

Theorem 2.3. For n−1 	 p = p(n) 	 n−2/3, we almost surely have

F([n]p) = (1 + o(1))np. (8)

For n−1 	 p ≤ 2n−2/3, we almost surely have(
1

3
+ o(1)

)
np ≤ F([n]p) ≤ (1 + o(1))np, (9)

Remark 2.4. One may in fact prove the following result: if p = γ n−2/3 for some
constant γ , then almost surely(

1 − 1

12
γ 3 + o(1)

)
np ≤ F([n]p) ≤

(
1 − 1

12
γ 3 + 1

12
γ 6 + o(1)

)
np. (10)

Our next result covers the range 1/3 ≤ a < 2/3 in Theorem 1.2.

Theorem 2.5. For any δ > 0, there is a positive constant c2 = c2(δ) such that if 2n−2/3 ≤
p = p(n) ≤ n−1/3−δ , then we almost surely have

c1(n log(n2p3))1/3 ≤ F([n]p) ≤ c2(n log(n2p3))1/3, (11)

where c1 is a positive absolute constant.

We now turn to the point a = 2/3 in Theorem 1.2.

Theorem 2.6. For any 0 ≤ δ < 1/3, there is a positive constant c3 = c3(δ) such that
if 1 ≤ α = α(n) ≤ nδ and p = p(n) = α−1n−1/3(log n)2/3, then we almost surely have

c3(n log n)1/3 ≤ F([n]p) ≤ c4(n log n)1/3 log n

log(α + log n)
,

where c4 is an absolute constant.

We remark that Theorems 2.5 and 2.6 consider ranges that overlap (functions p = p(n)

of the form n−1/3−δ′
for some 0 < δ′ < 1/3 are covered by both theorems). Finally, we

consider the range 2/3 ≤ a ≤ 1 in Theorem 1.2.

Random Structures and Algorithms DOI 10.1002/rsa
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Theorem 2.7. There exist positive absolute constants c5 and c6 for which the following
holds. If 1 ≤ α = α(n) ≤ (log n)2 and p = p(n) = α−1n−1/3(log n)8/3, then we almost
surely have

c5
√

np ≤ F([n]p) ≤ c6
√

np ·
√

α

1 + log α
.

Furthermore, if n−1/3(log n)8/3 ≤ p = p(n) ≤ 1, then, almost surely,

c5
√

np ≤ F([n]p) ≤ c6
√

np.

2.2. The Uniform Model and the Binomial Model

We now discuss how to translate Theorems 2.3, 2.5–2.7 on [n]p in Section 2.1 to the
corresponding results on [n]m. Before we proceed, let us make the following definition.

Definition 2.8. We shall say that an event in the probability space of the random sets [n]p

or in the probability space of the random sets [n]m holds with overwhelming probability,
abbreviated as w.o.p., if the probability of failure of that event is O(n−C) for any constant C,
that is, if the probability of failure is ‘superpolynomially’ small.

For us, the following consequence of Pittel’s inequality (see, e.g., [6, p. 35] and [19, p. 17])
will suffice for translating results on [n]p to results on [n]m.

Lemma 2.9. Let 1 ≤ m = m(n) < n and p = p(n) be such that p = m/n. Let P be
an event in the probability space of the random sets [n]p. If [n]p is in P w.o.p., then [n]m is
in P ∩ ([n]

m

)
w.o.p.

Proof. Let Q be the complement of P. Pittel’s inequality (see [6, p. 35] and [19, p. 17])
states that

P

[
[n]m is in Q ∩

([n]
m

)]
= O(

√
m) · P

[[n]p is in Q
]
. (12)

Since, by hypothesis, P[[n]p is in Q] = O(n−C) holds for any constant C > 0, inequality
(12) implies that

P

[
[n]m is in Q ∩

([n]
m

)]
= O(

√
m · n−C) = O(

√
n · n−C) = O(n−C+1/2),

which completes the proof of Lemma 2.9.

Every result in Theorems 2.5–2.7 will be proved with ‘w.o.p.’ rather than with ‘almost
surely’. By Lemma 2.9, we can translate each such result on [n]p to the corresponding result
on [n]m, where p = m/n. For example, Theorem 2.5 implies the following uniform version:
For any δ > 0, there is a positive constant c2 = c2(δ) such that if 2n1/3 ≤ m = m(n) ≤
n2/3−δ , then, with overwhelming probability, we have

c1

(
n log

m3

n

)1/3

≤ F([n]m) ≤ c2

(
n log

m3

n

)1/3

,

where c1 is a positive absolute constant.
Finally, we remark that one may use the usual deletion method to prove that the result

on [n]m corresponding to Theorem 2.3 holds almost surely.

Random Structures and Algorithms DOI 10.1002/rsa
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2.3. Organization and Notation

Our results on the number of Sidon sets are proved in Section 3. In Section 4, we consider
the upper bounds in Theorems 2.5–2.7. Section 5 contains some preparatory lemmas for
the proof of Theorem 2.3 and for the proofs of the lower bounds in Theorems 2.5–2.7. The
proof of Theorem 2.3 is given in Section 6. In Section 7, we give the proofs of the lower
bounds in Theorems 2.5–2.7.

More in line with the combinatorics literature and deviating from the number-theoretic
usage, we write f 	 g and g 
 f to mean f = o(g). For simplicity, we omit ‘floor’ and
‘ceiling’ symbols in our formulae, when they are not essential. For simplicity, we often
write a/bc instead of the less ambiguous a/(bc).

3. THE NUMBER OF SIDON SETS

The proofs of Theorems 2.1 and 2.2 are based on a method introduced by Kleitman and
Winston [21] (see [2, 4, 5, 15, 23] for other applications of this method).

3.1. Independent Sets in Locally Dense Graphs

We start with the following lemma, which gives an upper bound for the number of
independent sets in graphs that are ‘locally dense’.

Lemma 3.1. Let G be a graph on N vertices, let q be an integer and let 0 ≤ β ≤ 1 and R
be real numbers with

R ≥ e−βqN . (13)

Suppose the number of edges e(U) induced in G by any set U ⊂ V(G) with |U| ≥ R satisfies

e(U) ≥ β

(|U|
2

)
. (14)

Then, for all integers r ≥ 0, the number of independent sets in G of cardinality q + r is at
most (

N

q

)(
R

r

)
. (15)

Proof. Fix an integer r ≥ 0. We describe a deterministic algorithm that associates to every
independent set I of size q+r in G a pair (S0, A) of disjoint sets with S0 ⊂ I ⊂ S0∪A ⊂ V(G)

and with |S0| = q and |A| ≤ R. Furthermore, if, for some inputs I and I ′, the algorithm
outputs (S0, A) and (S′

0, A′) with S0 = S′
0, then A = A′. A moment’s thought now reveals

that the number of independent sets in G with q + r elements is at most as given in (15), as
claimed. We now proceed to describe the algorithm.

At all times, our algorithm maintains a partition of V(G) into sets S, X, and A (short for
selected, excluded, and available). As the algorithm evolves, S increases, X increases and A
decreases. The vertices in A will be labelled v1, . . . , v|A|, where, for every i, the vertex vi has
maximum degree in G[{vi, . . . , v|A|}] (the graph induced by {vi, . . . , v|A|} in G); we break ties

Random Structures and Algorithms DOI 10.1002/rsa
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arbitrarily by giving preference to vertices that come earlier in some arbitrary predefined
ordering of V(G).

We start the algorithm with A = V(G) and S = X = ∅. Crucially, at all times we
maintain S ⊂ I ⊂ S ∪ A. The algorithm works as follows. While |S| < q, we repeat the
following. Let a = |A| and suppose A = {v1, . . . , va}, with the vertex labelling convention
described above. Let i be the smallest index such that vi belongs to our independent set I ,
move v1, . . . , vi−1 from A to X (they are not in I by the choice of i), and move vi from A to S
(vi is in I). Observe that A has already lost i members in this iteration and S has gained one.
Let U = {vi, . . . , va}. If |U| ≥ R, we further move all neighbours of vi in A to X (since I
is an independent set and vi ∈ I). Otherwise, i.e., if |U| < R, consider the first q − |S|
members vi1 , . . . , viq−|S| ∈ I ∩ A (i < i1 < · · · < iq−|S| ≤ a) and move them from A to S.
Note that this is possible because |I ∩ A| = q + r − |S| ≥ q − |S|, and note that we now
have |S| = q (we do this because it is convenient to have S of cardinality q).

The procedure above defines an increasing sequence of sets S. Once we obtain a set S
with |S| = q, we let S0 = S, output (S0, A) and stop the algorithm. Inspection shows
that A depends only on S0 and not on I , i.e., if (S0, A) and (S0, A′) are both outputs of the
algorithm (for some inputs I and I ′), then A = A′. We now use our assumption on G to show
that |A| ≤ R.

We consider two cases: The first case is the case in which the body of the while loop of
the algorithm is executed with |U| < R at an iteration. The second case is the case in which
we have |U| ≥ R during the q iterations of the while loop. Observe that one of two cases
must occur.

First, we consider the first case. At the iteration with |U| < R, the set A lost the first i
vertices (and possibly others) and hence at the end of this iteration we have |A| ≤ a − i =
|U| − 1 < R. Moreover, |S| becomes of cardinality q and the algorithm stops.

Next, we consider the second case in which we have |U| ≥ R during the q iterations of
the while loop. In each iteration, consider an execution of the body of the while loop of the
algorithm when |U| ≥ R and (only) the vertex vi is moved to S. In this execution, A loses, in
total, i + d(vi, U) vertices, where d(vi, U) is the degree of vi in the graph G[U]. Recall that
we are considering the case |U| ≥ R and that vi has maximum degree in the graph G[U].
Applying (14), we see that d(vi, U) ≥ β(|U| − 1). Therefore, at the end of this iteration,
A has cardinality

a − (i + d(vi, U)) ≤ a − (a − |U| + 1 + β(|U| − 1)) ≤ |U| − β|U| ≤ (1 − β)a.

In the second case, the cardinality of A decreases by a factor of 1 − β in the q iterations
of the while loop and, at the end, A has at most N(1 − β)q ≤ Ne−βq ≤ R elements.

3.2. Proof of Theorem 2.1

We derive Theorem 2.1 from the following lemma.

Lemma 3.2. Let n, s and q be integers and let 0 < σ < 1 be a real number such that

s2q

n
≥ 2

1 − σ
log

σ s

2
. (16)

Random Structures and Algorithms DOI 10.1002/rsa
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Then, for any integer r ≥ 0, we have

|Zn(s + q + r)| ≤ |Zn(s)|
(

n

q

)(
2n/σ s

r

)
. (17)

To obtain the bound for |Zn(t)| in Theorem 2.1, we apply Lemma 3.2 iteratively (in the
calculations below, we omit ‘floor’ and ‘ceiling’ symbols when they are not essential).

Proof of Theorem 2.1. Fix integers n and t, with t ≥ 2s0, where s0 is as given in the
statement of our theorem, that is, s0 = (

2(1 − σ)−1n log n
)1/3

. We may clearly suppose
that t ≤ F(n) = (1 + o(1))

√
n, as otherwise Zn(t) = ∅. Let K be the largest integer

satisfying t2−K ≥ 2s0. We define three sequences (sk)0≤k≤K , (qk)0≤k≤K and (rk)0≤k≤K as
follows. We let q0 = s0 and r0 = t2−K − s0 − q0. Moreover, we let s1 = t2−K ≥ 2s0,
q1 = q0/4 and r1 = t2−K+1 − s1 − q1. For k = 2, . . . , K , we let sk = 2sk−1 = t2−K+k−1,
qk = qk−1/4 = q04−k and rk = t2−K+k − sk − qk . Note that qk + rk = sk for k ≥ 1 since
sk+1 = 2sk . We apply Lemma 3.2 with parameters sk , qk and rk for k = 0, . . . , K , to obtain
from (17) that

|Zn(t2
−K+k)| = |Zn(sk + qk + rk)| ≤ |Zn(sk)|

(
n

qk

)(
2n/σ sk

rk

)
(18)

for all k. It suffices to check (16) to justify these applications of Lemma 3.2. Since s2
kqk ≥

s2
0q0 = 2(1 − σ)−1n log n > 2(1 − σ)−1n log(σ sk/2) for all 0 ≤ k ≤ K , inequality (16)

holds for n, sk and qk . Using that sk−1 + qk−1 + rk−1 = t2−K+k−1 = sk for k ≥ 1 and
that |Zn(s0)| ≤ ( n

s0

)
, we obtain from (18) that

|Zn(t)| ≤
(

n

s0

) ∏
0≤k≤K

(
n

qk

) ∏
0≤k≤K

(
2n/σ sk

rk

)
. (19)

Note that (
n

s0

)
≤

(
en

s0

)s0

≤ n2s0/3 (20)

and that ∏
0≤k≤K

(
n

qk

)
≤ n

∑
0≤k≤K qk ≤ nq0

∑
0≤k≤K 1/4k ≤ n4q0/3 = n4s0/3. (21)

We now proceed to estimate the last factor of the right-hand side of (19). First note that, by
the choice of K , we have (r0 + s0 + q0)/2 = t2−K−1 < 2s0, and hence r0 < 2s0. Therefore,
we have that

(
2n/σ s0

r0

)
≤

⎧⎪⎪⎨
⎪⎪⎩

1 ≤ ns0 if r0 = 0(
2en

σ s0r0

)r0 ≤ ns0 if 0 < r0 ≤ s0(
2en

σ s0r0

)r0 ≤ nr0/3 ≤ n2s0/3 ≤ ns0 if s0 < r0 < 2s0

(22)

for all large n. We now note that

∏
1≤k≤K

(
2n/σ sk

rk

)
=

∏
1≤k≤K

(
2n/σ sK−k+1

rK−k+1

)
≤

∏
1≤k≤K

(
2n/σ sK−k+1

rK−k+1 + qK−k+1

)
. (23)

Random Structures and Algorithms DOI 10.1002/rsa



10 KOHAYAKAWA ET AL.

To justify the inequality in (23) above, we check that

rK−k+1 + qK−k+1 ≤ 2n

3σ sK−k+1
. (24)

Recalling that rK−k+1 + qK−k+1 = sK−k+1 = t2−k , we see that (24) is equivalent to t2−k ≤√
2n/3σ . However,

t

2k
≤ t

2
≤ 1

2
F(n) =

(
1

2
+ o(1)

) √
n ≤

√
2n

3
≤

√
2n

3σ
(25)

for all large enough n. We continue (23) by noticing that

∏
1≤k≤K

(
2n/σ sK−k+1

rK−k+1 + qK−k+1

)
=

∏
1≤k≤K

(
2n/σ t2−k

t2−k

)
≤

∏
1≤k≤K

(
22k+1en

σ t2

)t2−k

≤
(

2en

σ t2

)t
∑

k≥1 2−k

22t
∑

k≥1 k2−k =
(

2en

σ t2

)t

24t =
(

32en

σ t2

)t

.

(26)

Inequality (5) now follows from (19), (20), (21), (22) and (26).

It now remains to prove Lemma 3.2.

Proof of Lemma 3.2. Let S0 ⊂ [n] be an arbitrary Sidon set with |S0| = s. We show that
the number of Sidon sets S ⊂ [n] with S0 ⊂ S and |S| = s + q + r is at most

(n
q

)(2n/σ s
r

)
,

whence our lemma will follow.
Let G be the graph on V = [n] \ S0 satisfying that {a1, a2} (a1 �= a2) is an edge in G if

and only if there are b1 and b2 ∈ S0 such that a1 + b1 = a2 + b2. Observe that if S ⊂ [n]
is a Sidon set containing S0, then S \ S0 is an independent set in G. Let N = |V | = n − s,
β = (1 − σ)s2/2n and R = 2n/σ s. We wish to apply Lemma 3.1 to G with β and R as just
defined, to obtain an upper bound for the number of independent sets of cardinality q + r.
Note that (13) follows from (16). Now let U ⊂ V with |U| ≥ R be given. We check (14) as
follows.

Let J be the bipartite graph with (disjoint) vertex classes [2n] and U, with w ∈ [2n]
adjacent to a ∈ U in J if and only if w = a + b for some b ∈ S0. Note that a1 and a2 ∈ U
have a common neighbour w ∈ [2n] if and only if there are b1 and b2 ∈ S0 with a1 + b1 =
w = a2 + b2, that is, if and only if {a1, a2} is an edge of G.

Now note that J contains no 4-cycle: if a1, a2 ∈ U with a1 �= a2 are both adjacent to both w
and w′ ∈ [2n] with w �= w′, then a1+b1 = w = a2+b2 for some b1 and b2 ∈ S0 and a1+b′

1 =
w′ = a2+b′

2 for some b′
1 and b′

2 ∈ S0. But then b1−b′
1 = b2−b′

2, and hence b1+b′
2 = b′

1+b2.
As b1, b′

1, b2 and b′
2 ∈ S0 and S0 is a Sidon set, we have {b1, b′

2} = {b′
1, b2}. Since a1 �= a2,

we have b1 �= b2, whence b1 = b′
1, implying that w = a1 + b1 = a1 + b′

1 = w′.
The remarks above give that e(U) = ∑

w∈[2n]
(dJ (w)

2

)
, where dJ(w) denotes the degree

of w in J . Note that
∑

w∈[2n] dJ(w) = ∑
a∈U dJ(a) = |U||S0| = |U|s. Using the convexity of
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the function f (x) = (x
2

)
and Jensen’s inequality and recalling that |U| ≥ R = 2n/σ s, i.e.,

1 ≤ σ |U|s
2n , we obtain

e(U) =
∑

w∈[2n]

(
dJ(w)

2

)
≥ 2n

(|U|s/2n

2

)
= |U|s

2

( |U|s
2n

− 1

)

≥ 1

4
(1 − σ)

s2

n
|U|2 ≥ β

(|U|
2

)
,

as required in (14). Recall that a Sidon set S ⊂ [n] containing S0 is such that S \ S0 is an
independent set in G. Therefore, our required bound for the number of such S with |S| = s+
q+r follows from the upper bound (15) for the number of independent sets of cardinality q+r
in G.

We conclude this section by deriving Theorem 1.1 from Theorem 2.1.

Proof of Theorem 1.1. Letσ = 32/33 in Theorem 2.1. Then s0 = (2(1−σ)−1n log n)1/3 =
(66n log n)1/3. For large enough n, we have

|Zn| =
∑

0≤t≤F(n)

|Zn(t)| ≤
∑

0≤t<2s0

(
n

t

)
+

∑
2s0≤t≤F(n)

n3s0

(
33en

t2

)t

. (27)

Note that

∑
0≤t<2s0

(
n

t

)
≤ 2s0

(
n

2s0

)
≤ n2s0 , (28)

and that since f (t) = (33en/t2)t is increasing on the interval
(
0,

√
33n/e

)
,

∑
2s0≤t≤F(n)

n3s0

(
33en

t2

)t

≤ √
n · n3s0(33e)

√
n(1+o(1)) ≤ (33e)

√
n(1+o(1)) ≤ (33e)F(n)(1+o(1)).

(29)

Combining (27) together with (28) and (29) implies that |Zn| ≤ 2cF(n) for a suitable
constant c.

3.3. Proof of Theorem 2.2

We derive Theorem 2.2 from the following more general but technical estimate.

Lemma 3.3. Let n and t be integers. Suppose s is an integer and σ is a real number such
that, letting ω = t/s, we have

ω ≥ 4, 0 < σ < 1 and
s3

n
≥ 2

1 − σ
log

σ s

2
. (30)

Then

|Zn(t)| ≤
(

12ωn

(tσ)1−2/ωt

)t

. (31)

Random Structures and Algorithms DOI 10.1002/rsa
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Proof. We invoke Lemma 3.2 with q = s. Note that, then, (30) implies (16). We now let r
in Lemma 3.2 be t − 2s and obtain that

|Zn(t)| ≤
(

n

s

)(
n

s

)(
2n/σ s

t − 2s

)
. (32)

The right-hand side of (32) is

(
n

s

)2(2n/σ s

t − 2s

)
≤

(en

s

)2s
(

2en

σ s(t − 2s)

)t−2s

=
(en

s

)2s (en

s

)t−2s
(

2

σ(t − 2s)

)t−2s

=
(eωn

t

)t
(

2

σ t(1 − 2/ω)

)t(1−2/ω)

=
(

C
n

t2−2/ωσ 1−2/ω

)t

,

where C = 21−2/ωeω/(1 − 2/ω)1−2/ω = 21−2/ωeω2−2/ω/(ω − 2)1−2/ω. As ω ≥ 4, we
have ω−2 ≥ ω/2, and hence C ≤ eω41−2/ω < 12ω, completing the proof of Lemma 3.3.

Proof of Theorem 2.2. We shall apply Lemma 3.3. Let s = �t/4� and let ω = t/s ≥ 4.
Note that ω ≤ 5 by our assumption on t. Let λ = exp

(
t3/(3 · 53n)

)
and set σ = 2λ/s. It

follows from (6) that λ ≤ n1/3 and σ ≤ 10λ

t ≤ 1/3. Therefore, 2/(1 − σ) ≤ 3, and hence

s3

n
≥ t3

53n
= 3 log λ ≥ 2

1 − σ
log λ,

whence the third condition in (30) holds. We thus conclude that (31) holds. Let us now
estimate the right-hand side of (31).

Note that tσ ≥ 4sσ = 8λ, and therefore (tσ)1−2/ω ≤ (8λ)1−2/ω = (8λ)1/2 and

12ωn

(tσ)1−2/ωt
= 60n

(8λ)1/2t
= 15 · 21/2n

λ1/2t
≤ 22n

t
exp

(
− t3

6 · 53n

)
. (33)

Inequality (7) follows from (31) and (33), and Theorem 2.2 is proved.

4. THE UPPER BOUNDS IN THEOREMS 2.5–2.7

We shall apply Lemma 3.3 and Theorem 2.1 in order to prove the upper bounds in
Theorem 2.5 and Theorems 2.6–2.7, respectively.

4.1. Proof of the Upper Bound in Theorem 2.5

Let δ > 0 be given. We show that there is a constant c2 = c2(δ) such that if 2n−2/3 ≤ p =
p(n) ≤ n−1/3−δ , then w.o.p. we have

F([n]p) ≤ c2(n log n2p3)1/3.

To this end, we apply Lemma 3.3. We first define several auxiliary constants used to set t,
ω and σ in Lemma 3.3. Choose η > 0 small enough so that

(1 − 3δ)

(
1

3
+ η

)
<

1

3
. (34)
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Choose ω ≥ 4 so that (
1

3
+ η

) (
1 − 2

ω

)
>

1

3
. (35)

Finally, choose c = c2 so that

( c

ω

)3
> 3

(
1

3
+ η

)
and c >

24ω

2(1+3η)(1−2/ω)
. (36)

Now set t = c(n log n2p3)1/3, s = t/ω, σ = 2(n2p3)1/3+η/s and ξ = 24ω/c2(1+3η)(1−2/ω).
Note that

t ≥ c(n log 8)1/3 ≥ cn1/3 and ξ < 1. (37)

We first check that condition (30) holds for large enough n. We have ω ≥ 4 by the choice
of ω. Moreover, we have σ → 0 as n → ∞ because of (34). Finally, from (36) and the fact
that σ → 0, we have

s3

n
=

( c

ω

)3
log n2p3 ≥ 3

(
1

3
+ η

)
log n2p3 ≥ 2(1/3 + η)

1 − σ
log n2p3 = 2

1 − σ
log

σ s

2
,

which completes the verification of (30). Hence Lemma 3.3 implies that

P
([n]p contains a Sidon set of size t

) ≤ |Zn(t)|pt ≤
(

12ωnp

t(tσ)1−2/ω

)t

. (38)

Making use of the first equation of (37) and the fact that tσ = ωsσ = 2ω(n2p3)1/3+η, we
see that the upper bound in (38) is at most

(
12ωnp

cn1/3(2ω)1−2/ω(n2p3)(1/3+η)(1−2/ω)

)t

≤
(

12ω

c(2ω)1−2/ω
· n2/3p

(n2p3)(1/3+η)(1−2/ω)

)t

=
(

12ω2/ω

21−2/ωc(n2p3)(1/3+η)(1−2/ω)−1/3

)t

, (39)

which, by (35) and the assumption p ≥ 2n−2/3, is at most

(
12ω

21/2c(23)(1/3+η)(1−2/ω)−1/3

)t

≤
(

24ω

c2(1+3η)(1−2/ω)

)t

= ξ t . (40)

To complete the proof, it suffices to recall (37).

4.2. Proof of the Upper Bound in Theorem 2.6

Suppose 1 ≤ α = α(n) ≤ n1/3, and let p = p(n) = α−1n−1/3(log n)2/3. We show that w.o.p.

F([n]p) ≤ c4(n log n)1/3 log n

log(α + log n)
(41)
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for some absolute constant c4. To this end, we use Theorem 2.1. Let σ = 3/4, s0 =
2(n log n)1/3 and t = ωs0, where

ω = 11e
log n

log(α + log n)
, (42)

and note that ω ≥ 2 for sufficiently large n. Hence, by Theorem 2.1 and the union bound,
the probability that [n]p contains a Sidon set with at least t elements can be bounded as
follows:

P
(
F([n]p) ≥ t

) ≤ |Zn(t)|pt ≤ n3s0

(
44enp

t2

)t

= n3s0

(
44enp

ω2s2
0

)ωs0

≤
[(

11e

αω2

)ω

n3

]s0

,

(43)

where the last inequality follows from p = α−1n−1/3(log n)2/3 and s0 = 2(n log n)1/3.
For the proof of (41), it suffices to show that the base of the exponential in the right-hand

side of (43) is bounded away from 1, that is, whether(
11e

αω2

)ω

n3 < 1 − ε (44)

for some absolute constant ε > 0. Since ω ≥ 11e for sufficiently large n, then we have(
αω2

11e

)ω

≥ (αω)ω = exp (ω log(αω)) . (45)

We claim that

2 log(αω) ≥ log(α + log n). (46)

Observe that since ω ≥ 2, then (46) is trivially satisfied if α ≥ log n. On the other hand, if
α ≤ log n, then ω ≥ (log n)/ log log n and hence

2 log(αω) ≥ 2 log ω ≥ 2 log log n − 2 log log log n ≥ log(2 log n) ≥ log(α + log n).

It follows from (42), (45) and (46) that(
αω2

11e

)ω

≥ exp (ω log(αω)) ≥ exp (5e log n) ≥ 2n3

and hence (44) holds, completing the proof of (41).

4.3. Proof of the Upper Bounds in Theorem 2.7

Suppose that β = β(n) ≥ 1 and let p = p(n) = βn−1/3(log n)2/3. Let σ = 3/4, s0 =
2(n log n)1/3 and t = ωs0 for some ω ≥ 2. Similarly as in the proof of the upper bound in
Theorem 2.6, see (43), using Theorem 2.1, we estimate

P
(
F([n]p) ≥ t

) ≤ |Zn(t)|pt ≤
[(

11eβ

ω2

)ω

n3

]s0

. (47)

We split into two cases, depending on the order of magnitude of β.
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(Case I ) If β(n) ≤ (log n)2, then we let α = β−1(log n)2 and ω = (11e log n)/ log(eα) so
that t = ωs0 = 22e

√
np · √

α/ log(eα). Note that

(
11eβ

ω2

)ω

=
(

11e(log n)2

αω2

)ω

=
(

(log(eα))2

11eα

)11e(log(eα))−1 log n

. (48)

Since the function f (x) =
(

x2

11ex

)1/x = 1
e

(
x2

11

)1/x

is bounded by e
√

4/11/e−1 =
0.459 · · · on the interval [1, ∞), it follows from (48) that (we let x = log(eα))(

11eβ

ω2

)ω

≤
(

1

2

)11e log n

≤ n−4,

which, together with (47), proves that w.o.p. we have

F([n]p) ≤ t = c6
√

np ·
√

α

1 + log α
,

where c6 is an absolute constant.
(Case II ) If β(n) ≥ (log n)2, then we let ω = 11e

√
β so that t = ωs0 = 22e

√
np. By (47),

we have

P
(
F([n]p) ≥ t

) ≤
[
(11e)−11e

√
βn3

]s0 ≤ [
(11e)− log nn3

]s0 ≤ e−s0 ,

which proves that w.o.p. we have

F([n]p) ≤ t = c6
√

np,

where c6 is an absolute constant.

5. NONTRIVIAL SOLUTIONS IN RANDOM SETS

5.1. Estimating the Number of Nontrivial Solutions

A solution of the equation x1 + x2 = y1 + y2 is a quadruplet (a1, a2, b1, b2) ∈ [n]4 =
[n] × [n] × [n] × [n] with a1 + a2 = b1 + b2. A solution (a1, a2, b1, b2) of x1 + x2 = y1 + y2

is called trivial if it is of the form (a1, a2, a1, a2) or (a1, a2, a2, a1). Otherwise, it is called a
nontrivial solution. Let us define a hypergraph and a random variable that will be important
for us.

Definition 5.1. Let

S = {{a1, a2, a3, a4} : (a1, a2, a3, a4) is a nontrivial solution of x1 + x2 = y1 + y2}. (49)

We think of S as a hypergraph on the vertex set [n]. As usual, for R ⊂ [n], we let S[R]
denote the subhypergraph of S induced on R. Let X be the random variable |S[[n]p]|, that
is, the number of hyperedges of S induced by [n]p.

In Lemma 5.4 below, we give an estimate for X that will be used in the proof of
Theorem 2.3 and in the proofs of the lower bounds in Theorems 2.5–2.7.
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To estimate X , we have to deal with the issue of ‘repeated entries’ in a hyper-
edge {a1, a2, b1, b2} ∈ S. Indeed, if {a1, a2, a3, a4} ∈ S, with a1 ≤ a2 ≤ a3 ≤ a4, we
may have a2 = a3, but no other equality can occur. Hence the hypergraph S has hyperedges
of size 4 and 3. Based on this, we make the following definition.

Definition 5.2. For i = 3 and 4, let Si be the subhypergraph of S with all the hyperedges
of size i. Furthermore, let Xi := |Si[[n]p]|.

We clearly have

S = S4 ∪ S3 and S4 ∩ S3 = ∅ (50)

and hence

X = X4 + X3. (51)

In order to estimate X , we estimate X4 and X3 separately.

Lemma 5.3. Fix δ > 0. The following assertions hold w.o.p.

(i) If p ≥ n−3/4+δ , then X4 = n3p4(1/12 + o(1)).
(ii) If p 
 n−1, then X3 = O(max{n2p3, n3δ}).

We remark that the constant implicit in the big-O notation in (ii) above is an absolute
constant. The proof of Lemma 5.3 is based on a concentration result due to Kim and Vu [20].
We shall introduce the Kim–Vu polynomial concentration result in Section 5.2 and prove
Lemma 5.3 in Section 5.3. Assuming Lemma 5.3, we are ready to estimate X.

Lemma 5.4. Fix δ > 0 and suppose p ≥ n−3/4+δ . Then, w.o.p., X = n3p4(1/12 + o(1)).

Proof. Let X = X([n]p)be as defined in Definition 5.1 and recall (51). From the assumption
that p ≥ n−3/4+δ , we see that the estimates for X4 and X3 given in Lemma 5.3(i) and (ii) do
hold w.o.p. Since the inequality np 
 1 yields n2p3 	 n3p4 and we also have n3δ 	 n4δ ≤
n3p4, because p ≥ n−3/4+δ , we infer max{n2p3, n3δ} 	 n3p4, and hence, w.o.p., X3 	 X4.
It follows from (51) and the estimate in Lemma 5.3(i) that X = n3p4(1/12 + o(1)) holds
w.o.p.

It now remains to prove Lemma 5.3. We first introduce the main tool we shall use in the
proof of that lemma, due to Kim and Vu [20].

5.2. The Kim–Vu Polynomial Concentration Result

Let H = (V , E) be a hypergraph on the vertex set V = [n]. We assume each hyperedge e ∈
E(H) has a real weight w(e). Let [n]p be a random subset of [n] obtained by choosing each
element i ∈ [n] independently with probability p and let H[[n]p] be the subhypergraph
of H induced on [n]p. Let Y be the sum of the weights of all the hyperedges in H[[n]p],
i.e., Y = ∑

e∈H[[n]p] w(e). Kim and Vu obtained a concentration result for the random
variable Y . We now proceed to present their result [20] (see also Theorem 7.8.1 in Alon and
Spencer [3]).
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We start by introducing basic definitions and notation (we follow [3]). Let k be the
maximum cardinality of the hyperedges in H. For a set A ⊂ [n] (|A| ≤ k), let YA be the sum
of the weights of all the hyperedges in H[[n]p] containing A, i.e., YA = ∑

A⊂e∈H[[n]p] w(e).
Let EA = E(YA | A ⊂ [n]p) be the expectation of YA conditioned on the event that A should
be contained in [n]p. Let Ei be the maximum value of EA over all A ⊂ [n] with |A| = i. Note
that E0 = E(Y). Let μ = E(Y) and set

E ′ = max{Ei : 1 ≤ i ≤ k} and E = max{E ′, μ}. (52)

Theorem 5.5 (Kim–Vu polynomial concentration inequality). With the above notation,
we have, for every λ > 1,

P
[|Y − μ| > ak(EE ′)1/2λk

]
< 2e2e−λnk−1,

where ak = 8k(k!)1/2.

5.3. Proof of Lemma 5.3

We prove (i) and (ii) of Lemma 5.3 separately.

Proof of Lemma 5.3(i). We need to show that, for p ≥ n−3/4+δ , where δ > 0 is fixed, we
have X4 = n3p4(1/12 + o(1)) w.o.p. We first estimate the expectation μ(X4) of X4.

Suppose {i, j, k, l} ∈ S4 with 0 ≤ i < j < k < l ≤ n − 1. Note that i + l = j + k. Let us
fix 0 ≤ i ≤ n − 1. If j ≥ (n + i)/2, then l = j + k − i > 2j − i ≥ n + i − i = n, which
contradicts l ≤ n−1. Hence we have i < j < (n+ i)/2. For fixed i and j, if k > n+ i− j−1,
then l = j+k−i > n−1, which contradicts l ≤ n−1. Therefore we have j < k ≤ n+i−j−1.
Once i, j and k are chosen, the value of l is determined by the condition i + l = j + k.
Consequently,

|S4| ∼
n−1∑
i=0

(n+i)/2∑
j=i

n+i−j−1∑
k=j

1 =
n−1∑
i=0

(n+i)/2∑
j=i

(n + i − 2j)

∼ n3

∫ 1

0

∫ (1+x)/2

x
(1 + x − 2y)dydx ∼ 1

12
n3.

Hence

μ(X4) = |S4|p4 =
(

1

12
+ o(1)

)
n3p4. (53)

Next we apply Theorem 5.5 to prove that X4 is concentrated around its expectation μ(X4).
To this end, we compute the quantities Ei (1 ≤ i ≤ 4) and E ′ and E defined in (52). We
first estimate E1. For a ∈ [n], consider the quantity E{a}. The number of hyperedges in S4

containing a is O(n2) and the probability that one such hyperedge is in [n]p, conditioned on
a ∈ [n]p, is p3. We conclude that, for any a ∈ [n], we have E{a} = O(n2p3). Consequently,
E1 = max{EA : |A| = 1} = O(n2p3). A similar argument gives that Ei = max{EA : |A| =
i} = O(n3−ip4−i) for all 1 ≤ i < 4. Therefore, since np 
 1, we have Ei = O(n2p3) for all
1 ≤ i < 4. Also, clearly, E4 = max{EA : |A| = 4} = 1. Thus

E ′ = max{Ei : 1 ≤ i ≤ 4} = O(max{n2p3, 1}), (54)
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and E = max{E ′, μ(X4)} = O(max{n2p3, 1, n3p4}). Since p ≥ n−3/4+δ > n−3/4, we have

E = O(n3p4). (55)

In view of (54) and (55), a simple computation implies the following:

(Case I ) If n−3/4+δ ≤ p ≤ n−2/3, then

E ′ = O(1) and E = O(n3p4). (56)

(Case II ) If p ≥ n−2/3, then

E ′ = O(n2p3) and E = O(n3p4). (57)

We now estimate X4 for each case separately.
(Case I ) Suppose n−3/4+δ ≤ p ≤ n−2/3. In this case, (56) implies that

(EE ′)1/2 = O(n3p4 · 1)1/2 = O(n3p4)1/2. (58)

Set λ = (n3p4)1/12. By the assumption p ≥ n−3/4+δ , we have

λ = (n3p4)1/12 ≥ nδ/3. (59)

Also n3p4 ≥ n4δ 
 1, and hence combining (58) and λ = (n3p4)1/12 implies that

(EE ′)1/2λ4 = O(n3p4)1/2(n3p4)1/3 = O(n3p4)5/6 = o(n3p4). (60)

Theorem 5.5 together with (59) then yields that

P
[|X4 − μ(X4)| > a4(EE ′)1/2λ4

]
< 2e2e−λn3 ≤ 2e2e−nδ/3

n3,

where a4 = 84(4!)1/2. Given (60), we have that w.o.p.

X4 = μ(X4) + o(n3p4). (61)

(Case II ) Suppose p ≥ n−2/3. In this case, (57) yields that

(EE ′)1/2 = O(n3p4n2p3)1/2 = O

(
n3p4

(np)1/2

)
. (62)

Set λ = (np)1/12. By the assumption p ≥ n−2/3,

λ ≥ (n1/3)1/12 = n1/36. (63)

Since np 
 1, combining (62) and λ = (np)1/12 implies that

(EE ′)1/2λ4 = O

(
n3p4

(np)1/2

)
(np)1/3 = O

(
n3p4

(np)1/6

)
= o(n3p4). (64)

Theorem 5.5 together with (63) then yields that

P
[|X4 − μ(X4)| > a4(EE ′)1/2λ4

]
< 2e2e−λn3 ≤ 2e2e−n1/36

n3,
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where a4 = 84(4!)1/2. Given (64), we have that w.o.p.

X4 = μ(X4) + o(n3p4). (65)

In view of (53), it follows from (61) and (65) that, for p ≥ n−3/4+δ , we have X4 =
n3p4(1/12 + o(1)) w.o.p. This completes the proof of (i) of Lemma 5.3.

Proof of Lemma 5.3(ii). Fix δ > 0. We show that, w.o.p., X3 = O(max{n2p3, n3δ}) for p 

n−1. First we estimate the expectation μ(X3) of X3. Since |S3| = O(n2), we have

μ(X3) = O(n2p3). (66)

Next, we prove a concentration result for X3 applying Theorem 5.5. To this end, we
estimate the quantities Ei (1 ≤ i ≤ 3). As in the proof of Lemma 5.3(i), one may
check that E ′ = max1≤i≤3 Ei = O(max{np2, p, 1}) and hence E = max{E ′, μ(X3)} =
O(max{np2, p, 1, n2p3}). By the assumption np 
 1, we infer

E ′ = O(max{np2, 1}) and E = O(max{n2p3, 1}). (67)

Based on (67), we consider the cases p ≥ n−2/3+δ and n−1 	 p ≤ n−2/3+δ separately.
We first suppose p ≥ n−2/3+δ . From (67), we have E ′ = O(max{np2, 1}) and E =

O(n2p3). A proof similar to the proofs of (61) and (65) shows that, for p ≥ n−2/3+δ , w.o.p.,
X3 = μ(X3) + o(n2p3). This together with (66) implies that for p ≥ n−2/3+δ , w.o.p.,

X3 = O(n2p3). (68)

We now suppose n−1 	 p ≤ n−2/3+δ . In this case, (67) yields that E ′ = O(1) and E = O(n3δ)

and hence, setting λ = nδ/2, we have

(EE ′)1/2λ3 = O(n(3/2)δ)n(3/2)δ = O(n3δ). (69)

Theorem 5.5 with λ = nδ/2 yields

P
[|X3 − μ(X3)| > a3(EE ′)1/2λ3

]
< 2e2e−λn2 ≤ 2e2e−nδ/2

n2, (70)

where a3 = 83(3!)1/2. Inequality (70) together with (69) implies that, for n−1 	 p ≤ n−2/3+δ ,
w.o.p., X3 = μ(X3) + O(n3δ). Since, under the assumption p ≤ n−2/3+δ , we have μ(X3) =
O(n2p3) = O(n3δ), we infer that, for n−1 	 p ≤ n−2/3+δ , w.o.p.,

X3 = O(n3δ). (71)

Combining (68) and (71) completes the proof of (ii) of Lemma 5.3.

6. PROOF OF THEOREM 2.3

6.1. Theorem 2.3 for Smaller p = p(n)

We first consider the case in which n−1 	 p 	 n−2/3.

Proof of (8) in Theorem 2.3. Suppose n−1 	 p 	 n−2/3. We show that (8) holds almost
surely, using the usual deletion method. Let S, S[[n]p] and X be as in Definition 5.1.
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If we delete one vertex from each hyperedge in S[[n]p], the remaining vertex set is an
independent set of S[[n]p], and hence it is a Sidon set contained in [n]p. Consequently,
F([n]p) ≥ |[n]p| − |S[[n]p]| = |[n]p| − X . Since trivially F([n]p) ≤ |[n]p|, we have |[n]p| −
X ≤ F([n]p) ≤ |[n]p|. Note that the Chernoff bound gives that, for p 
 n−1, we almost
surely have |[n]p| = np + o(np). Therefore, in order to show (8), it only remains to show
that X = o(np) almost surely. Recall that Xi is the number of edges of cardinality i in S[[n]p]
(i ∈ {3, 4}), and that X = X3 + X4 (see Definition 5.2 and (51)). Equations (53) and (66),
together with n−1 	 p 	 n−2/3, imply that E(X) = �(n3p4) + O(n2p3) = �(n3p4) =
o(np). Hence Markov’s inequality gives that we almost surely have X = o(np), and our
result follows.

6.2. Theorem 2.3 for Larger p = p(n)

We now consider the wider range n−1 	 p ≤ 2n−2/3.

Proof of (9) in Theorem 2.3. We have already shown that, if n−1 	 p 	 n−2/3,
then F([n]p) = (1 + o(1))np holds almost surely. Therefore, it suffices to show that (9)
holds if, e.g., n−2/3/ log n ≤ p ≤ 2n−2/3. We proceed as in the proof of (8), given in
Section 6.1 above. We have already observed that |[n]p| = np(1 + o(1)) almost surely as
long as p 
 n−1, and therefore F([n]p) ≤ np(1 + o(1)) almost surely in this range of p.
It now suffices to recall that F([n]p) ≥ |[n]p| − X and to prove that, almost surely, we
have X ≤ (2/3 + o(1))np if n−2/3/ log n ≤ p ≤ 2n−2/3. But with this assumption on p,
Lemma 5.4 tells us that, w.o.p.,

X = 1

12
n3p4 + o(n3p4) = 1

12
n3p4 + o(np) ≤

(
2

3
+ o(1)

)
np, (72)

as required.

7. THE LOWER BOUNDS IN THEOREMS 2.5–2.7

Let us first state a simple monotonicity result (see, e.g., [19, Lemma 1.10]) that will be used
a few times in this section.

Fact 7.1. Let p = p(n) and q = q(n) be such that 0 ≤ p < q ≤ 1, and let a = a(n) > 0
and b = b(n) > 0 be functions of n.

(i) If F([n]p) ≥ a holds w.o.p., then F([n]q) ≥ a holds w.o.p.
(ii) If F([n]q) ≤ b holds w.o.p., then F([n]p) ≤ b holds w.o.p.

Statements (i) and (ii) in Fact 7.1 are, in fact, equivalent. We state them both explicitly
just for convenience.

7.1. Proofs of the Lower Bounds in Theorems 2.5 and 2.6

The lower bounds in Theorems 2.5 and 2.6 rely on a result on independent sets in hyper-
graphs. Before stating the relevant result, we introduce some definitions. A hypergraph
is called simple if any two of its hyperedges share at most one vertex. A hypergraph is
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r-uniform if all its hyperedges have cardinality r. We shall use the following extension of
a celebrated result due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], obtained by
Duke, Lefmann and the third author [10].

Lemma 7.2. Let H be a simple r-uniform hypergraph, r ≥ 3, with N vertices and average
degree at most tr−1 for some t. Then H has an independent set of size at least

c
(log t)1/(r−1)

t
N , (73)

where c = c(r) is a positive constant that depends only on r.

We now briefly discuss how to obtain a lower bound on F([n]p) using Lemma 7.2. Let
S[[n]p] be the hypergraph in Definition 5.1. Since an independent set of S[[n]p] is a Sidon
set contained in [n]p, independent sets in S[[n]p] give lower bounds for F([n]p). To apply
Lemma 7.2, we shall obtain a simple 4-uniform subhypergraph S∗ of S[[n]p] by deleting
suitable vertices from S[[n]p]. Lemma 7.2 will then tell us that S∗ has a suitably large
independent set, and this will yield our lower bound on F([n]p). In fact, we obtain the
following result.

Lemma 7.3. There is an absolute constant d > 0 such that, for p ≥ 2n−2/3,
w.o.p. F([n]p) ≥ d

(
n log(n2p3)

)1/3
holds.

Lemma 7.3 easily implies the lower bounds in Theorems 2.5 and 2.6. The proof of
Lemma 7.3 will be given in Section 7.2.

7.2. Proof of Lemma 7.3

In Lemma 7.4 below, we prove Lemma 7.3 for a narrower range of p. We shall then invoke
monotonicity (Fact 7.1) to obtain Lemma 7.3 in full.

Lemma 7.4. There is an absolute constant d > 0 such that, for 2n−2/3 ≤ p 	 n−2/3+1/15,
we have F([n]p) ≥ d(n log n2p3)1/3 w.o.p.

Proof. Let S[[n]p], Si[[n]p], X and Xi be as in Definitions 5.1 and 5.2. Recall that the size
of an independent set of S[[n]p] gives a lower bound on F([n]p).

We wish to apply Lemma 7.2. However, since S[[n]p] may be neither simple nor uniform,
we consider a suitable induced subhypergraph S∗ ⊂ S[[n]p], as discussed just after the
statement of Lemma 7.2. We have S[[n]p] = S3[[n]p] ∪ S4[[n]p]. Let S̃4 be the set of all
hyperedges in S4[[n]p] that share at least two vertices with some other hyperedge in S4[[n]p].
If we delete one vertex from each hyperedge of S3[[n]p] ∪ S̃4, the remaining induced
subhypergraph S∗ of S[[n]p] is both simple and 4-uniform. To apply Lemma 7.2 to S∗, we
now estimate |V(S∗)| and the average degree of S∗.

First we consider |V(S∗)|. Note that |[n]p| − X3 − |S̃4| = |[n]p| − |S3[[n]p]| − |S̃4| ≤
|V(S∗)| ≤ |[n]p|. We shall show the following two facts.

Fact 7.5. Fix δ > 0 and suppose n−1+δ 	 p 	 n−1/2. We have, w.o.p., X3 = o(np).
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Fact 7.6. Fix δ > 0 and suppose n−1+δ 	 p 	 n−2/3+1/15. We have, w.o.p., |S̃4| = o(np).

Since the Chernoff bound gives that |[n]p| = np + o(np) w.o.p. for p 
 (log n)/n,
Facts 7.5 and 7.6 imply that, w.o.p., we have

|V(S∗)| = np(1 + o(1)). (74)

Next we consider the average degree of S∗. Owing to S∗ ⊂ S[[n]p], (74) and Lemma 5.4,
the average degree 4|S∗|/|V(S∗)| of S∗ is such that, w.o.p., 4|S∗|/|V(S∗)| ≤ 4X/|V(S∗)| ≤
n2p3.

We now are ready to apply Lemma 7.2. In view of our average degree estimate above,
we set t = (n2p3)1/3. Given (74), Lemma 7.2 implies that, w.o.p., the hypergraph S∗, and
thus S[[n]p], has an independent set of size

c
(log t)1/3

t
|V(S∗)| ≥ c

[(1/3) log(n2p3)]1/3

(n2p3)1/3
np(1 + o(1)) ≥ d(n log(n2p3))1/3, (75)

for, say, d = c/2. This completes the proof of Lemma 7.4.

In order to finish the proof of Lemma 7.4, it remains to prove Facts 7.5 and 7.6.

Proof of Fact 7.5. Lemma 5.3(ii) tells us that, w.o.p., X3 = O(max{n2p3, nδ}). From the
assumption n−1+δ 	 p 	 n−1/2, we have both n2p3 	 np and nδ 	 np, whence, w.o.p.,
X3 = o(np).

Proof of Fact 7.6. We give a sketch of the proof. Let P be the family of the pairs {E1, E2}
of distinct members E1 and E2 of S4[[n]p] with |E1 ∩ E2| ≥ 2. Observe that

|S̃4| ≤ 2|P|. (76)

An argument similar to one in the proof of Lemma 5.3(ii), based on the Kim–Vu polynomial
concentration result, tells us that |P| = O(max{E[|P|], nδ}) = O(max{n4p6, nδ}) holds
w.o.p. From the assumption n−1+δ 	 p 	 n−2/3+1/15 = n−3/5, we have both n4p6 	 np
and nδ 	 np, and hence |P| = o(np) holds w.o.p. Given (76), we have, w.o.p., |S̃4| =
o(np).

In order to establish Lemma 7.3, we need to expand the range of p in Lemma 7.4 from
2n−2/3 ≤ p 	 n−2/3+1/15 = n−3/5 to p ≥ 2n−2/3.

Proof of Lemma 7.3. To complement the range of p covered by Lemma 7.4, it is enough
to show that, say, for p ≥ n−2/3+1/16, we have, w.o.p., F([n]p) ≥ d ′ (n log(n2p3)

)1/3
for some

absolute constant d ′ > 0. Lemma 7.4 implies that, for p = n−2/3+1/16, we have, w.o.p.,

F([n]p) ≥ d[n log(n2n−2+3/16)]1/3 = d[n log(n3/16)]1/3 = d[n(3/16) log n]1/3

> d(1/16)1/3[n(2 log n)]1/3 = d ′[n log n2]1/3,

where d ′ = d(1/16)1/3. By Fact 7.1, we infer that, for p ≥ n−2/3+1/16, we have, w.o.p.,
F([n]p) ≥ d ′[n log n2]1/3 ≥ d ′[n log(n2p3)]1/3, completing the proof of Lemma 7.3.
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7.3. Proof of the Lower Bound in Theorem 2.7

For larger p = p(n), it turns out that, instead of using Lemma 7.2, it is better to make use
of the fact that [n] contains a Sidon set of cardinality (1 + o(1))

√
n (see Section 1). An

immediate use of this fact gives the lower bound (1 + o(1))p
√

n, but one can, in fact, do
better. The following is a particular case of a very general theorem of Komlós, Sulyok and
Szemerédi [25].

Lemma 7.7. There is an absolute constant d > 0 such that, for every sufficiently large
m and every set of integers A with |A| = m, we have

F(A) ≥ d · F([m]).

Since the Chernoff bound gives that, for p 
 1/n, we almost surely have |[n]p| =
(1 + o(1))np, Lemma 7.7 together with F([m]) ≥ (1 + o(1))

√
m gives the lower bound in

Theorem 2.7. Clearly, to have this result with ‘w.o.p.’, it suffices to assume p 
 (log n)/n.
There is an alternative, simple proof of the lower bound in Theorem 2.7, based on the

following lemma.

Lemma 7.8. If (log n)2/n 	 p ≤ 1/3, then, w.o.p.,

F([n]p) ≥
(

1

3
√

2
+ o(1)

) √
np. (77)

Combining Lemma 7.8 and Fact 7.1 implies that, for p 
 (log n)2/n, we have, w.o.p.,
F([n]p) ≥ (1/3

√
6 + o(1))

√
np.

Proof of Lemma 7.8. Let (log n)2/n 	 p ≤ 1/3. We shall show that (77) holds w.o.p. We
define a partition of [n] = {0, . . . , n − 1} into equal length intervals, and consider a family
of intervals in the partition satisfying the property that, if we choose an arbitrary element
from each interval, the set of chosen elements forms a Sidon set. We shall choose the length
of the intervals so that [n]p will intersect each interval in a constant number of elements on
average. A simple analysis of this construction yields that (77) holds w.o.p. The details are
as follows.

Let I = {Ii : 0 ≤ i < �n/x�} be the partition of [n] into consecutive intervals with x =
�1/p� elements each. More precisely, let Ii = [xi, x(i + 1) − 1] ∩ [n] for all 0 ≤ i <

�n/x�. In what follows, we ignore I�n/x�−1 if this interval has fewer than x elements. Let
Ieven = {I0, I2, I4, . . . } ⊂ I be the set of all intervals with even indices and let y = |Ieven|.
Note that y ≥ (1/2)�n/x� − 1 ≥ (1/2)�np� − 1 = (1/2 + o(1))np. By the Chowla–Erdős
result [8, 11], there exists a Sidon subset S of [y] with

|S| = (1 + o(1))
√

y =
(

1√
2

+ o(1)

) √
np. (78)

We “identify” [y] and Ieven by the bijection i �→ I2i. Let {ai : i ∈ S} be a set of integers
with ai ∈ I2i for all i ∈ S. We claim that {ai : i ∈ S} is a Sidon set. Suppose ai1 + ai2 =
aj1 + aj2 , where i1, i2, j1 and j2 ∈ S. Observe that

ai1 + ai2 ∈ I2i1+2i2 ∪ I2i1+2i2+1 and aj1 + aj2 ∈ I2j1+2j2 ∪ I2j1+2j2+1, (79)
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which, together with the assumption that ai1 + ai2 = aj1 + aj2 , implies that i1 + i2 = j1 + j2.
Since S is a Sidon set, we have {i1, i2} = {j1, j2}, whence {ai1 , ai2} = {aj1 , aj2}. This shows
that {ai : i ∈ S} is indeed a Sidon set.

We now consider a random set [n]p. An interval I2i (i ∈ S) is said to be occupied if I2i

contains at least one element of [n]p. Let Iocc be the family of occupied intervals. By the
above claim, we have F([n]p) ≥ |Iocc|. Let us estimate |Iocc|. Note that each interval I2i

(i ∈ S) is independently occupied with probability

p̃ = 1 − (1 − p)x = 1 − (1 − p)�1/p� ≥ 1 − e−p(1/p−1) ≥ 1 − e−1+p ≥ 1 − e−2/3 > 1/3,
(80)

where the third inequality follows from the assumption p ≤ 1/3. Thus, under the assumption
(log n)2/n 	 p ≤ 1/3, the Chernoff bound, (78) and (80) give that, w.o.p.,

|Iocc| = (1 + o(1))E(|Iocc|) = (1 + o(1))|S|p̃ ≥
(

1√
2

+ o(1)

) √
np · 1

3

=
(

1

3
√

2
+ o(1)

) √
np.

To complete the proof of Lemma 7.8, it now suffices to recall that F([n]p) ≥ |Iocc|.
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