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Abstract

For a rational number r > 1, a set A of positive integers is called
an r-multiple-free set if A does not contain any solution of the equa-
tion rx = y. The extremal problem of estimating the maximum
possible size of r-multiple-free sets contained in [n] := {1, 2, · · · , n}
has been studied in combinatorial number theory for theoretical in-
terest and its application to coding theory. Let a and b be relatively
prime positive integers such that a < b. Wakeham and Wood showed
that the maximum size of (b/a)-multiple-free sets contained in [n] is
b

b+1
n+O(logn).
In this note we generalize this result as follows. For a real num-

ber p ∈ (0, 1), let [n]p be a set of integers obtained by choosing each
element i ∈ [n] randomly and independently with probability p. We
show that the maximum possible size of (b/a)-multiple-free sets con-
tained in [n]p is b

b+p
pn+O(

√
pn logn log log n) with probability that

goes to 1 as n→∞.

1 Introduction
A recent trend in extremal combinatorics transfers extremal problems from
dense environments to sparse environments. It has seen to be a fruitful
subject of research. In combinatorial number theory, the following extremal
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problem in a dense environment has been well-studied and successively
extended to sparse settings: Fix an equation and estimate the maximum
size of subsets of [n] := {1, 2, · · · , n} containing no non-trivial solutions of
a given equation.

As an example of this line of research, Kohayakawa–Łuczak–Rödl [8]
transferred Roth’s classical theorem [10] on arithmetic progressions of length
3 (i.e. solutions to x1 + x3 = 2x2) to show that there are such progressions
even in random subsets of the integers. Also, Szemerédi’s theorem [12]
was transferred to random subsets of integers in Conlon–Gowers [2] and
Schacht [11]. The result of Erdős–Turán [4], Chowla [1], and Erdős [3] from
the 1940s on the maximum size of Sidon sets in [n] was extended in [6, 7] to
sparse random subsets of [n], where a Sidon set is a set of positive integers
not containing any non-trivial solution of x1 + x2 = y1 + y2.

In this note we transfer the following extremal results to random subsets.
For a rational number r > 1, a set A of positive integers is called an r-
multiple-free set if A does not contain any solution of rx = y. An interesting
problem on r-multiple-free sets is of estimating the maximum possible size
fr(n) of r-multiple-free sets contained in [n] := {1, 2, · · · , n}. This extremal
problem has been studied in [14, 9, 13] and has applications to coding theory
in [5].

Wang [14] showed that f2(n) = 2
3n + O(log n). Leung and Wei [9]

proved that for every integer r > 1, fr(n) = r
r+1n + O(log n). Wakeham

and Wood [13] extended it to rational numbers as follows.

Theorem 1 (Wakeham and Wood [13]). Let a and b be relatively prime
integers with 0 < a < b. Then

fb/a(n) =
b

b+ 1
n+O (log n) .

We shall investigate the maximum size of constant-multiple-free sets
contained in a random subset of [n]. Let [n]p be a random subset of [n]
obtained by choosing each element in [n] independently with probability p.
Let fr([n]p) denote the maximum size of r-multiple-free sets contained in
[n]p. We are interested in the behavior of fr([n]p) for every rational number
r > 1.

Theorem 1 gives the answer of the above question for the case p = 1.
On the other hand, if p = o(1), then the usual deletion methods give that
with high probability (that is, with probability that goes to 1 as n→∞) the
maximum size of (b/a)-multiple-free sets contained in [n]p is np(1− o(1)).
Hence, from now on, we consider p as a real number with 0 < p < 1.

Using Chernoff bounds (for example, see Lemma 11), Theorem 1 easily
implies the following:
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Figure 1: The graph of y = b/(b+ p) for 0 ≤ p ≤ 1

Fact 2. Let p ∈ (0, 1) and let a and b be relatively prime integers such that
0 < a < b. Let ω be a function of n that goes to ∞ arbitrarily slowly as
n → ∞. With high probability, there is a (b/a)-multiple-free set in [n]p of
size

b

b+ 1
pn+ ω

√
pn.

The lower bound on fb/a([n]p) given by Fact 2 is not tight. The main
result of this note improves it:

Theorem 3. Let p ∈ (0, 1) and let a and b be relatively prime integers such
that 0 < a < b. Then, with high probability,

fb/a ([n]p) =
b

b+ p
pn+O (

√
pn log n log log n) .

The ratio fb/a([n]p)

np goes from 1 to b
b+1 as p varies from 0 to 1 (See

Figure 1). The proof of Theorem 3 is given in Sections 2 and 3. It is graph
theoretic.

2 Proof of Theorem 3
In order to show Theorem 3, we use a graph theoretic approach which was
used in Wakeham and Wood [13]. Let r = b/a > 1 be a rational number.
Let D = (V,E) be the directed graph with the vertex set V = [n] in which
the set E of arcs (or directed edges) is {(x, y) : rx = y}. Let D[[n]p] be the
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subgraph of D induced on [n]p. Observe that fr([n]p) is the same as the
independence number α(D[[n]p]) of D[[n]p].

We consider the structure of D[[n]p]. The in-degree and out-degree of
each vertex in D are both at most 1. Also, there is no directed cycle in
D because (x, y) ∈ E implies x < y. Therefore, each component of D or
D[[n]p] is a directed path.

In order to obtain an independent set of D[[n]p] of maximum size,
we find independent sets in each component. Let C be a component of
D[[n]p]. As we mentioned above, C is a directed path. Let V (C) =
{u0, u1, · · · , ui, · · · , ul} be the vertex set of C such that uj < uj+1 and
(uj , uj+1) ∈ E for 0 ≤ j ≤ l− 1. Observe that V ∗(C) := {u0, u2, u4, · · · } ⊂
V (C) forms an independent set of C of maximum size. Therefore, the set

T ∗ :=
⋃
C

V ∗(C),

where C runs over all components of D[[n]p], forms an independent set of
D[[n]p] of maximum size. Hence, we have the following.

Lemma 4. fr([n]p) = |T ∗|.

Thus, in order to show Theorem 3, it suffices to show the following.

Lemma 5. Let p ∈ (0, 1) and let a and b be relatively prime integers such
that 0 < a < b. Then, with high probability,

|T ∗| = b

b+ p
pn+O (

√
pn log n log log n) .

The proof of Lemma 5 is given in Section 3.

3 Proof of Lemma 5
In the remainder of this note, we prove Lemma 5. For positive integers b
and k, let k be an i-th subpower of b if k = bil for some l 6≡ 0 (mod b).
Let Ti be the set of i-th subpowers of b in [n]. Let T ∗i ⊂ Ti denote the
set of i-th subpowers v of b in [n]p such that v is at an even distance from
the smallest vertex of the component of D[[n]p] containing v. Observe that
T ∗ =

⊔
i T
∗
i , and hence,

|T ∗| =
∑
i

|T ∗i |. (1)

In Section 3.1, we estimate the expected value E(|T ∗|). Section 3.2 deals
with a concentration result about |T ∗| with high probability.
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3.1 Expectation
We first estimate E (|T ∗i |) for each i, and their sum E (|T ∗|). Recall that Ti
denotes the set of i-th subpowers of b in [n]. Note that since 1 ≤ bi ≤ n,
the range of i is 0 ≤ i ≤ logb n. It is clear that

Ti =
{
bix

∣∣ 1 ≤ x ≤ n

bi
, x 6≡ 0 (mod b)

}
.

Hence we have the following:

Fact 6.
|Ti| =

b− 1

b

n

bi
± 1. (2)

We consider two cases separately, based on the parity of i.

Lemma 7. For 0 ≤ j ≤ (logb n)/2, we have

E
(
|T ∗2j |

)
=

b− 1

b(1 + p)
pn

(
1

b2j
+
(p
b

)2j
p

)
± 1.

Proof. First we consider Pr
[
v ∈ T2j is in T ∗2j

]
. Let {v0, v1, v2, · · · }, where

vi < vi+1, be the vertex set of the component of D containing v. Observe
that vi ∈ Ti, and hence, v = v2j . The event that v ∈ T2j is in T ∗2j happens
only when one of the following holds:

• There is some r with 0 ≤ r ≤ j − 1 such that v2j−1−2r 6∈ [n]p and
vi ∈ [n]p for all 2j − 2r ≤ i ≤ 2j.

• The vertices v0, v1, · · · , v2j are in [n]p.

Hence, we have

Pr
[
v ∈ T2j is in T ∗2j

]
= p

(
(1− p) + p2(1− p) + · · ·+ p2j−2(1− p) + p2j

)
.

(3)
Thus we infer

E
(
|T ∗2j |

)
= |T2j | · Pr

[
v ∈ T2j is in T ∗2j

]
(2),(3)

=

(
b− 1

b

n

b2j
± 1

)
p

(
(1− p)1− p2j

1− p2
+ p2j

)
=

b− 1

b(1 + p)
pn

(
1

b2j
+
p2j

b2j
p

)
± 1,

which completes the proof of Lemma 7.

Lemma 8. For 1 ≤ j ≤ (logb n)/2, we have

E
(
|T ∗2j−1|

)
=

b− 1

b(1 + p)
pn

(
1

b2j−1
−
(p
b

)2j−1
p

)
± 1.
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Proof. Using an argument similar to the proof of (3), one may obtain that

Pr
[
v ∈ T2j−1 is in T ∗2j−1

]
= p

(
(1− p) + p2(1− p) + · · ·+ p2j−2(1− p)

)
.

(4)
Thus we infer

E
(
|T ∗2j−1|

)
= |T2j−1| · Pr

[
v ∈ T2j−1 is in T ∗2j−1

]
(2),(4)

=
(

(b− 1)
n

b2j
± 1
)
p(1− p)1− p2j

1− p2

=
b− 1

1 + p
pn

(
1

b2j
−
(p
b

)2j)
± 1,

which completes the proof of Lemma 8.

Lemmas 7 and 8 immediately imply the following.

Corollary 9. For 0 ≤ i ≤ logb n, we have

E (|T ∗i |) =
b− 1

b(1 + p)
pn

(
1

bi
+
(
−p
b

)i
p

)
± 1. (5)

Summing over all i with 0 ≤ i ≤ logb n, we have the following.

Corollary 10.

E (|T ∗|) =

logb n∑
i=0

E(|T ∗i |) =
b

b+ p
pn+O(log n).

Proof. One may easily see that for |x| ≥ b ≥ 2,

logb n∑
i=0

1

xi
=

x

x− 1
+O

(
1

n

)
. (6)

Corollary 9 yields that for b ≥ 2

logb n∑
i=0

E(|T ∗j |)
(5)
=

logb n∑
i=0

[
b− 1

b(1 + p)
pn

(
1

bi
+
(
−p
b

)i
p

)
± 1

]
(6)
=

b− 1

b(1 + p)
pn

[
b

b− 1
+O

(
1

n

)
+
−b/p
−b/p− 1

p+O

(
1

n

)]
+O(log n)

=
b

b+ p
pn+O(log n),

which completes the proof of Corollary 10.
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3.2 Concentration
Next we consider a concentration result about |T ∗i |. In other words, we
show that |T ∗i | is close to its expectation with high probability. We will
apply the following version of Chernoff bounds.

Lemma 11 (Chernoff bound). Let Xi be independent random variables
such that Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi, and let X =

∑n
i=1Xi.

Then for any λ ≥ 0,

Pr [X ≥ (1 + λ)E(X)] ≤ e−
λ2

2+λE(X), (7)

Pr [X ≤ (1− λ)E(X)] ≤ e−
λ2

2 E(X). (8)

In particular, for 0 ≤ λ ≤ 1,

Pr [|X − E(X)| ≥ λE(X)] ≤ 2e−
λ2

3 E(X). (9)

We first consider the case when 0 ≤ i ≤ 0.9 logb n.

Lemma 12. For 0 ≤ i ≤ 0.9 logb n, we have

|T ∗i | = E (|T ∗i |) +O (
√
pn log log n) (10)

with probability at least 1− 2e−
1
3 (log logn)2 .

Proof. Fix i. If k ∈ Ti ⊂ [n], then let

Xk =

{
1 with probability p∗
0 with probability 1− p∗.

where p∗ = Pr [v ∈ Ti is in T ∗i ]. Otherwise, let Xk = 0 with probability 1.
Let X =

∑n
k=1Xk. Observe that

X = |T ∗i | (11)

as random variables.
Note that for each k ∈ Ti, the event that k ∈ T ∗i depends only on the

events that v ∈ [n]p, where the vertices v are in the component of D con-
taining k and v ≤ k. Hence, Xk are independent for all k ∈ Ti. Therefore
we are able to use Chernoff bounds (Lemma 11) for a concentration result
on X.

Set λ =
log log n√

E(X)
. Note that 0 ≤ λ ≤ 1 for 0 ≤ i ≤ 0.9 logb n since

E(X) ≥ Ω
(
pn
εp
bi

)
≥ Ω

( εp
n0.9

)
= Ω

(
εppn

0.1
)
,
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where εp is a positive constant such that εp → 0 as p → 1. The inequal-
ity (9) yields that

Pr
[
|X − E(X)| ≥

√
E (X) log log n

]
≤ 2e−

1
3 (log logn)2 . (12)

Corollary 9 yields that E (|X|) = O(pn), and hence, we infer that

X = E (X) +O (
√
pn log log n)

with probability at least 1 − 2e−
1
3 (log logn)2 . This together with (11) com-

pletes the proof of Lemma 12.

Next we consider the remaining case when 0.9 logb n ≤ i ≤ logb n.

Lemma 13.
logb n∑

i=b0.9 logb nc+1

|T ∗i | = O(
√
pn)

with probability at least 1− o(1).

Proof. Corollary 9 implies that

E(|T ∗i |) = O

(
pn

1

bi

)
= O

(
pn0.1

)
= O

(
(pn)0.1

)
, (13)

where the second inequality holds for i ≥ 0.9 logb n. Markov’s inequality
completes the proof of Lemma 13.

Now we are ready to show Lemma 5.

Proof of Lemma 5. We have that

|T ∗| =

logb n∑
i=1

|T ∗i | =
b0.9 logb nc∑

i=1

|T ∗i |+
logb n∑

i=b0.9 logb nc+1

|T ∗i |.

Lemmas 12 and 13 give that

|T ∗| =

logb n∑
i=1

E (|T ∗i |) +O (
√
pn log n log log n) ,

with probability at least

1− (logb n) · 2e− 1
3 (log logn)2 − o(1)

= 1− 2elog logb n− 1
3 (log logn)2 − o(1) = 1− o(1).
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This together with Corollary 10 implies that with high probability

|T ∗| =
b

b+ p
pn+O (

√
pn log n log log n) ,

which completes the proof of Lemma 5.
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