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QUANTITATIVE QUANTUM ERGODICITY AND THE

NODAL DOMAINS OF MAASS-HECKE CUSP FORMS

JUNEHYUK JUNG

Abstract. We prove a quantitative statement of the quantum ergod-
icity for Maass-Hecke cusp forms on SL(2,Z)\H. As an application of
our result, we obtain a sharp lower bound for the L2-norm of the restric-
tion of even Maass-Hecke cusp form f ’s to any fixed compact geodesic
segment in {iy | y > 0} ⊂ H, with a possible exceptional set which
is polynomially smaller in the size than the set of all f . We also im-
prove L∞ estimate for Maass-Hecke cusp forms given by Iwaniec and
Sarnak, for almost all Maass-Hecke cusp forms. We then deduce that
the number of nodal domains of f which intersect a fixed geodesic seg-
ment increases with the eigenvalue, with a small number of exceptional
f ’s. In the recent work of Ghosh, Reznikov, and Sarnak, they prove
the same statement for all f without exception, assuming the Lindelof
Hypothesis and that the geodesic segment is long enough. For almost
all Maass-Hecke cusp forms, we give better lower bound of number of
nodal domains.

1. Introduction

Let X = SL2(Z)\H and let φ be an L2-normalized Maass-Hecke cusp form
on the modular surface X. In other words, φ is a function on H such that:

1.
∫

X
|φ(z)|2dA(z) = 1,

2. φ(γz) = φ(z) for all γ ∈ SL2(Z),
3. −∆Hφ = (14 + t2φ)φ, and

4. Tnφ = λφ(n)φ for some λφ(n) for all n > 0, where Tn is the normal-
ized n-th Hecke operator:

Tnf(z) =
1√
n

∑

b (d)
ad=n

f

(

az + b

d

)

.

Such φ has a Fourier expansion of the type

φ(z) =
√

cosh(πtφ)
∑

n 6=0

ρφ(n)
√
yKitφ(2π|n|y)e(nx).

We would like to thank Peter Sarnak for introducing his recent paper with Ghosh and
Reznikov, and suggesting this problem as a part of our thesis. We also appreciate Peter
Sarnak and Nicolas Templier for providing much encouragement and many helpful com-
ments. This work was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIP)(No. 2013042157). The author was also par-
tially supported by TJ Park Post-doc Fellowship funded by POSCO TJ Park Foundation.
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The coefficients satisfy ρφ(±n) = ρφ(±1)λφ(n) for n > 0, where we have the
following estimate for the first Fourier coefficient

t−ǫ
φ ≪ǫ |ρφ(1)| ≪ǫ t

ǫ
φ
1 (1.1)

for any ǫ > 0 (see [Iwa90] and [HL94]). The Hecke eigenvalues λφ(n) satisfy
the following recurrence relation:

λφ(nm) =
∑

d|(n,m)

λφ

(nm

d2

)

(1.2)

and this is the main arithmetic input in our work.
If we assume further that

5. φ is an eigenfunction of σ, where σ : X → X is an orientation revers-
ing isometry induced from x+ iy 7→ −x+ iy on H,

then such φ’s form an orthonormal basis of the cuspidal subspace L2
cusp (X)

of L2 (X). We say φ is even (resp. odd) if σφ = φ (resp. σφ = −φ).
Now we define a measure µφ on X by

µφ = |φ(z)|2 dxdy
y2

.

Then the Arithmetic Quantum Unique Ergodicity (QUE) Theorem of Lin-
denstrauss [Lin06] and Soundararajan [Sou10] asserts that

µφ −→
w
dA(z) (1.3)

as tφ → ∞.
In terms of the Fourier coefficients ρφ(n) of φ, it is known that

1

tφ

∑

n

ρφ(n+m)ρφ(n)ψ(
π|n|
tφ

) → 8

π
δ0,m

∫ ∞

0
ψ(y)dy (1.4)

for any ψ ∈ C∞
0 (0,∞) implies the arithmetic QUE theorem, whereas the

converse is only known for a certain class of ψ (see Appendix A in [GRS12]).
Both forms (1.3) and (1.4) of QUE can be quantified with rates, which is

called the Quantitative QUE (QQUE). We state the strong form as follows:

Conjecture 1.1 ((Strong) QQUE). There exist ν > 0 and k <∞ such that

for any ψ ∈ C∞
0 (0,∞),

∣

∣

∣

∣

∣

1

tφ

∑

n

ρφ(n+m)ρφ(n)ψ(
π|n|
tφ

)− 8

π
δ0,m

∫ ∞

0
ψ(y)dy

∣

∣

∣

∣

∣

≪m t−ν
φ ||ψ||W k,∞(0,∞).

(1.5)

Note that subconvexity estimate for the triple product L-function L(s, φ×
φ × φ0) with any fixed Maass form φ0 is equivalent to the QQUE, if the
implied constant depends polynomially on the derivatives of φ0 ([Wat02]).

1Here and elsewhere, A ≪ω B means |A| < CB for some constant C depending only
on ω.
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Also note that the Lindelof Hypothesis for the triple product L-function
allows one to take any 0 < ν < 1/2 for a certain class of ψ ∈ C∞

0 (0,∞).
We investigate an average version (1.5) and prove:

Theorem 1.1. Let 1/3 < θ < 1 be a fixed constant and let G = T θ. Assume

that ψ ∈ C∞
0 (0,∞) is supported in (0, l) ⊂ (0,∞).

(i) Let 0 < δ < 1 be a fixed constant. Then there exists A > 0 depending

only on θ and ǫ such that

∑

|tφ−T |<G

∣

∣

∣

∣

∣

∑

n

ρφ(n+m)ρφ(n)ψ(
πn

X
)

∣

∣

∣

∣

∣

2

≪ǫ,l mXGT
1+ǫ||ψ||2WA,∞ (1.6)

holds uniformly in 1 ≤ m < X1−δ. One can take, for example, A =
100/min{3θ − 1, ǫ}.

(ii) There exists A > 0 depending only on θ and ǫ such that

∑

|tφ−T |<G

∣

∣

∣

∣

∣

∣

∑

n 6=0

ρφ(n)
2ψ

(

π|n|
X

)

− 8X

π

∫ ∞

0
ψ(y)dy

∣

∣

∣

∣

∣

∣

2

≪ǫ,l XGT
1+ǫ||ψ||2WA,∞ .

(1.7)

Such short average of the quantitative quantum ergodicity for holomor-
phic Hecke eigenforms is first studied in [LS03], and Theorem 1.1 is the
generalization to Maass-Hecke eigenforms.

According to Weyl’s law, there are asymptotically ∼ 1
12T Maass-Hecke

cusp forms in {φ | T < tφ < T + 1}.2 Hence Theorem 1.1 implies that
∣

∣

∣

∣

∣

1

tφ

∑

n

ρφ(n+m)ρφ(n)ψ(
π|n|
tφ

)− 8

π
δ0,m

∫ ∞

0
ψ(y)dy

∣

∣

∣

∣

∣

≪ǫ t
−1/2+ǫ
φ

holds on average for any fixed m ≥ 0 and ψ ∈ C∞
0 (0,∞). As noted above,

this implies that Lindelof Hypothesis holds for the triple product L-functions
on this shorter range compared to longer range established in [LS95].

In a quantitative form, we have the best result towards QQUE conjecture:

Corollary 1.2. Let ψ ∈ C∞
0 (0,∞) and let δ and ν be fixed positive con-

stants. All but Oǫ(T
1/3+δ+2ν+ǫ) forms in {φ | T < tφ < T + 1} satisfy

∣

∣

∣

∣

∣

1

tφ

∑

n

ρφ(n+m)ρφ(n)ψ(
π|n|
tφ

)− 8

π
δ0,m

∫ ∞

0
ψ(y)dy

∣

∣

∣

∣

∣

< t−ν
φ ||ψ||WA,∞

uniformly in 0 ≤ m < T δ. Here A > 0 is a sufficiently large constant

depending only on ǫ > 0.

Now let Zφ be the zero set of φ, which in turn is a finite union of

real analytic curves. For any subset K ⊆ X, let NK(φ) be the number

2 One can show using the Selberg’s trace formula that asymptotically half of the forms
within the set are even.
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of connected components (the nodal domains) in X\Zφ which meets K. Let

N(φ) = NX(φ). Then the Bogomolny-Schmit Conjecture states that there
exists a global constant C > 0 such that

N(φ) = Cλφ + o(λφ). (1.8)

Note that it is not true for a general Riemannian surfaces that the number
of nodal domains of an eigenfunction must increase with the eigenvalue. In
[GRS12], the authors study nodal domains crossing δ = {iy | y > 0} and
prove

tφ ≪ N δ(φ) ≪ tφ log tφ (1.9)

for the even Maass-Hecke cusp forms φ. Assuming the conjecture (1.8), this
estimate in particular implies that almost all nodal domains do not touch
δ!3

Note that most of the nodal domains they capture in (1.9) are in the region
near the cusp determined by y > tφ/100. So far no unconditional lower
bound for the number of nodal domains crossing a fixed compact geodesic
segment is known. However one can find such lower bound assuming the
Lindelof Hypothesis.

Theorem 1.3 ([GRS12]). Let β ⊂ δ be a fixed compact geodesic segment

which is sufficiently long. Assume the Lindelof Hypothesis for the L-functions
L(s, φ). Then

Nβ(φ) ≫ǫ t
1

12
−ǫ

φ .

1.1. L2 restriction. The assumption of β being sufficiently long is neces-
sary in order to deduce the lower bound for L2 norm for the restriction to
β

∫

β
|φ(z)|2ds≫β 1

from the QUE theorem. The QQUE conjecture implies the same estimate
for any fixed compact geodesic segment β ⊂ δ ([GRS12]), and therefore as
an application of Corollary 1.2, we get:

Corollary 1.4. Let β ⊂ δ be any fixed compact geodesic segment. Then
∫

β
|φ(z)|2ds≫β 1

for all but Oǫ(T
1/3+ǫ) forms within the set of even Maass-Hecke cusp forms

in {φ | T < tφ < T + 1}.

Such lower bound for the restriction is first proved in [HZ04]. In particu-
lar, the authors show that

3In [GRS12], such nodal domains are called “split.”
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Theorem 1.5 ([HZ04]). Let Ω ⊂ R
n be a bounded piecewise smooth mani-

fold with ergodic billiard map. Let {uj} be a sequence of interior eigenfunc-

tions such that

−∆uj = λ2juj in Ω, < uj , uk >L2(Ω)= δjk

∂νuj = 0 on ∂Ω

0 ≤λ1 ≤ λ2 ≤ · · · .

Then there exist a positive constant c and a density one subset S of positive

integers such that

lim
j→∞, j∈S

∫

∂Ω
f |uj |2dσ = c

∫

∂Ω
fdσ

for any smooth function f on ∂Ω.

Observe that an even Maass-Hecke cusp form φ is an eigenfunction which
satisfies the Neumann boundary condition on the domain

Ω = {z ∈ H | |z| > 1, 0 < Re(z) < 1/2}.

Although this domain is non-compact, one can expect from Theorem 1.5
that there exists a positive constant c such that

∫

β
|φ(z)|2ds→ c

∫

β
ds

for any β ⊂ δ along a density one subset of even Maass-Hecke cusp forms.
Corollary 1.4 hints the existence of such c with a possible exceptional set
which is polynomially smaller in the size than the set of all even Maass-Hecke
cusp forms.

1.2. L∞ estimate. In [IS95], using Selberg’s trace formula and amplifica-
tion method, a nontrivial improvement of L∞-norm of Maass-Hecke cusp
forms is achieved.

Theorem 1.6 ([IS95]). Let φ be a Maass-Hecke cusp form on X. Then for

any fixed compact C ⊂ X, we have

sup
z∈C

|φ(z)| ≪C,ǫ t
5

12
+ǫ

φ .

The key inequality for this estimate is the following(Equation A.12 [IS95]):

∑

T<tφ<T+1

|φ(z)|2
∣

∣

∣

∣

∣

∣

∑

n≤N

αnρφ(n)

∣

∣

∣

∣

∣

∣

2

≪ǫ N
ǫT ǫ

(

T
∑

|αn|2 + (N +N1/2y)T 1/2(
∑

|αn|)2
)



6 JUNEHYUK JUNG

Choosing αn = ρφ(n) and N = T 1/4 yields

|φ(z)|2




∑

n≤T 1/4

|ρφ(n)|2




2

≪ǫ T
5

4
+ǫ

provided that z ∈ C for some compact C ⊂ X. Therefore for φ satisfying
∑

n≤T 1/4

|ρφ(n)|2 ≫ T 1/4, (1.10)

we have

sup
z∈C

|φ(z)| ≪C,ǫ t
3

8
+ǫ

φ .

Note that Theorem 1.1 implies that most of Maass-Hecke cusp forms satisfy
(1.10).

Corollary 1.7. Let C ⊂ X be a compact subset. All but Oǫ(T
13

12
+ǫ) Maass-

Hecke cusp forms in {φ | T < tφ < T + T 1/3} satisfy

sup
z∈C

|φ(z)| ≪C,ǫ t
3

8
+ǫ

φ .

Note that there are ∼ T 4/3 Maass-Hecke cusp forms in {φ | T < tφ <

T + T 1/3}.

1.3. Application to the number of nodal domains. Now we give lower
bounds for Nβ(φ) for almost all φ’s without the assumptions in Theorem
1.3:

Theorem 1.8. Let β ⊂ δ be any fixed compact geodesic segment. Fix ǫ > 0.
Then within the set of even Maass-Hecke cusp forms in {φ | T < tφ < T+1},
all but Oǫ(T

5

6
+ǫ) forms satisfy Nβ(φ) > t

1

2
ǫ

φ .

As an application of Corollary 1.7, we improve the lower bound of number
of nodal domains given in Theorem 1.3 for almost all forms.

Theorem 1.9. Let β ⊂ δ be any fixed compact geodesic segment. Fix ǫ > 0.
Then almost all forms within the set of even Maass-Hecke cusp forms in

{φ | T < tφ < T + T 1/3} satisfy

Nβ(φ) > t
1

8
−ǫ

φ .

2. Quantitative quantum ergodicity on average

We first prove the first case m ≥ 1 of Theorem 1.1 assuming that l is
fixed, for simplicity.
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Let h(y) = e−y2 and let hT,G(y) = h((y − T )/G) + h(−(y + T )/G). By
(1.1), the sum (1.6) is

≪ tǫφ
∑

φ

hT,G(tφ)

ρφ(1)2

∣

∣

∣

∣

∣

∑

n

ρφ(n+m)ρφ(n)ψ(
πn

X
)

∣

∣

∣

∣

∣

2

.

From the Hecke relation (1.2),

∑

φ

hT,G(tφ)

ρφ(1)2

∣

∣

∣

∣

∣

∑

n

ρφ(n+m)ρφ(n)ψ(
πn

X
)

∣

∣

∣

∣

∣

2

=
∑

f

hT,G(tφ)

∣

∣

∣

∣

∣

∣

∑

d|m

∑

n

ρf (n(n + d))ψ(
πmn

dX
)

∣

∣

∣

∣

∣

∣

2

≤τ(m)
∑

d|m

∑

f

hT,G(tφ)

∣

∣

∣

∣

∣

∑

n

ρf (n(n+ d))ψ(
πmn

dX
)

∣

∣

∣

∣

∣

2

where τ is the divisor function. Now expanding the square and then applying
the Kuznetsov trace formula, we obtain an identity of the form:

τ(m)
∑

d|m

∑

f

hT,G(tφ)

∣

∣

∣

∣

∣

∑

n

ρf (n(n+ d))ψ(
πmn

dX
)

∣

∣

∣

∣

∣

2

+ {continuous}

=
τ(m)

π2

∑

d|m

∑

r1,r2

δr1(r1+d),r2(r2+d)ψ(
πmr1
dX

)ψ(
πmr2
dX

)

∫

R

tanh(πy)hT,G(y)ydy

+
2iτ(m)

π

∑

d|m

∞
∑

c=1

∑

r1,r2

S(r1(r1 + d), r2(r2 + d), c)

c
ψ(
πmr1
dX

)ψ(
πmr2
dX

)

× g

(

4π

c

√

r1(r1 + d)r2(r2 + d)

)

where

g(x) =

∫ ∞

−∞
J2iy(x)

hT,G(y)y

cosh πy
dy.

Note that the contribution coming from the continuous spectrum is non-
negative, and the diagonal contribution (the second line) is O(XGT 1+ǫ).
For the non-diagonal contribution (the sum involving Kloosterman sums,)
we prove the following:

Lemma 2.1. Let ψ ∈ C∞
0 (0,∞), 1 ≪ R ≪ T and 0 < d ≪ R1−δ for some

fixed δ > 0. Then there exists A > 0 depending only on θ and ǫ such that

∑

c≥1

∑

r1,r2

ψ(
r1
R
)ψ(

r2
R
)
S(r1(r1 + d), r2(r2 + d), c)

c
g

(

4π
√

r1r2(r1 + d)(r2 + d)

c

)

≪ǫ dGRT
1+ǫ||ψ||2WA,∞ . (2.1)
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2.1. Bessel transform. To estimate the non-diagonal contribution, we first
analyze

g(x) =

∫ ∞

−∞
J2iy(x)

hT,G(y)y

cosh πy
dy.

Lemma 2.2. For any ǫ > 0 and A > 0,

g(x) ≪ǫ,A T
−A

holds uniformly in 0 < x < GT 1−ǫ.

Proof. From the identity

(

J2iu(x)− J−2iu(x)

sinhπu

)∧

(y) = −i cos (x cosh(πy))

and using the Plancherel theorem, we obtain

g(x) =

∫

R

J2iy(x)− J−2iy(x)

sinhπy
hT,G(y)y tanhπydy

=

∫

R

J2iy(x)− J−2iy(x)

sinhπy
hT,G(y)|y|dy +OA(T

−A)

= −i
∫

R

cos (x cosh(πy)) (hT,G(u)|u|)∧ (y)dy +OA(T
−A).

Note that

(h(u)T,G|u|)∧ (y)

=

∫

R

(

h(
u− T

G
) + h(−u+ T

G
)

)

|u|e(yu)du

=

∫

R

h(
u− T

G
)ue(yu)du −

∫

R

h(−u+ T

G
)ue(yu)du +OA(T

−A(1 + y2)−1)

=

∫

R

h(
u− T

G
)ue(yu)du +

∫

R

h(
u− T

G
)ue(−yu)du +OA(T

−A(1 + y2)−1)

=Ge(Ty) (h(u)(Gu + T ))∧ (Gy) +Ge(−Ty) (h(u)(Gu + T ))∧ (−Gy)
+OA(T

−A(1 + y2)−1).

Therefore, we have

g(x) = −i
∫

R

cos

(

2πiTy

G
+ ix cosh(

πy

G
)

)

(h(u)(Gu + T ))∧ (y)dy+OA(T
−A).
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Because (h(u)(Gu + T ))∧ (y) is rapidly decaying, we can (smoothly) trun-

cate the range of y to −T ǫ/2 < y < T ǫ/2. In such range, since x < GT 1−ǫ,

d

dy

(

2πTy

G
+ x cosh(

πy

G
)

)

=
2πT

G
+ x

π

G
sinh(

πy

G
)

>
2πT

G
− π2T 1−ǫ/2

G

>
T

G
for all sufficiently large T and

∂k

∂yk

(

2πTy

G
+ x cosh(

πy

G
)

)

≪ T 1−ǫ/2G−k−⌊k−1

2
⌋ (k ≥ 2)

Therefore successive integration by parts yields:

g(x) ≪A Gmax{G
T
,
1

G
}A.

�

Now let

g̃(x) =

∫ ∞

0
J2iy(x)

hT,G(y)y

cosh πy
dy.

Lemma 2.3. Assume that GT 1−ǫ < x with 0 < ǫ < θ/2. For any A > 0,
there exists N > 0 such that, g̃(x) is a linear sum of

∫ ∞

0
gk,N (y, x)yhT,G(y)dy (k = 0, 1, · · · , N)

plus O(T−A), where

gk,N(y, x) = (4y2 + x2)−k/2−1/4 exp(ix+ i

N−1
∑

m=1

cm
y2m

x2m−1
).

Proof. For x, y > 0

J2iy(x) = b(4y2 + x2)−1/4 exp
(

i
√

4y2 + x2 − 2iy sinh−1(2y/x)
)

× cosh(πy)

(

N−1
∑

m=0

bm(4y2 + x2)−m/2 +O(x−N )

)

,

with some explicit constants b, b1, b2, · · · . Assuming y ∼ T and x > GT 1−ǫ >

T 1+ θ
2 , we may expand the exponent to get

exp
(

ix
√

1 + 4y2/x2 − 2iy sinh−1(2y/x)
)

=exp(ix+ i
N−1
∑

m=1

cm
y2m

x2m−1
) +O(y2Nx−2N+1).

with some explicit constants cm (here c1 = −2 6= 0). �



10 JUNEHYUK JUNG

Lemma 2.4. For 0 < x < 1,

g(x) ≪ Gx2.

Proof. From

J2iy+2(x) = (x/2)2iy+2
∞
∑

k=0

(−1)k
(x/2)2k

k!Γ(k + 2 + 2iy)

and the Sterling’s formula, we get

J2iy+2(x) ≪ x2(|y|+ 1)−3/2 cosh πy.

Therefore by shifting the contour,

g(x) = −
∫ ∞

−∞
J2iy+2(x)

(y − i)hT,G(y − i)

coshπy
dy

≪ x2
∫ ∞

−∞
|hT,G(y − i)|dy

≪ Gx2.

�

Remark: In Lemma 2.2 and 2.3, one only needs the fact that h(y) is a rapidly
decreasing function, but for Lemma 2.4, analyticity is required.

2.2. Reduction. By Lemma 2.4 and the Weil’s bound

|S(n,m, c)| ≤ (n,m, c)1/2c1/2τ(c),

we can assume that the sum in (2.1) is taken over c ≪ TA for some large
A > 0. If R2 ≪ GT 1−ǫ for some ǫ > 0, then by Lemma 2.2, we have Lemma
2.1. Hence we may assume GT 1−ǫ1 ≪ R2 with fixed ǫ1 such that

min{θ
2
,
3θ − 1

2
} > ǫ1 > 0

and that the sum is taken over c≪ R2G−1T−1+ǫ1 .
Observe that g(x) is the imaginary part of g̃(x), ψ is real, and the Kloost-

erman sums are real. Therefore we may replace g(x) with g̃(x) in the sum.
Now applying Lemma 2.3, it is sufficient to prove that there exists A > 0

such that

∑

c≪R2G−1T−1+ǫ1

∑

r1,r2

ψ(
r1
R
)ψ(

r2
R
)
S(r1(r1 + d), r2(r2 + d), c)

c

× gk,N(y,
4π
√

r1r2(r1 + d)(r2 + d)

c
) ≪ǫ dR

1+ǫ||ψ||2WA,∞

(2.2)
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for fixed k ≥ 0 and y ∼ T . Note that for X ≪ R1−ǫ, |gk,N (y, x)| ≪ x−1/2

and the Weil’s bound yield
∑

c≪X

∑

r1,r2

∣

∣

∣
ψ(
r1
R
)ψ(

r2
R
)
∣

∣

∣

|S(r1(r1 + d), r2(r2 + d), c)|
c

×
∣

∣

∣

∣

∣

gk,N (y,
4π
√

r1r2(r1 + d)(r2 + d)

c
)

∣

∣

∣

∣

∣

≪ǫ XR
1+ǫ||ψ||2L∞ ,

which is worse than R1+ǫ in R aspect unlessX ≪ Rǫ. Because R2G−1T−1+ǫ1

can get as large as T 1+ǫ1−θ, we have to capture the cancellation coming from
the sign changes in the summation to get a right bound. In this article, we
investigate cancellation coming from the sum over r1 and r2, as in [LS03].

To this end, firstly observe that, for y ∼ T and x≫ T 1+ǫ, the oscillation
of gk,N (y, x) is dictated by eix. In other words, we have

∂m

∂xm
(

e−ixgk,N (y, x)
)

≪ x−
1

2T−mǫ.

for any m > 0. Also, the main oscillating factor of

exp

(

4πi
√

r1r2(r1 + d)(r2 + d)

c

)

with respect to r1 ∼ R and r2 ∼ R is

ec(2r1r2 + dr1 + dr2),

where ec(x) = exp(2πix/c).
From these observations we define fc(r1, r2) by

ec(2r1r2+dr1+dr2)fc(r1, r2) = ψ(
r1
R
)ψ(

r2
R
)gk,N (y,

4π
√

r1r2(r1 + d)(r2 + d)

c
)

and for each c rearrange the sum modulo c:
∑

r1,r2

S(r1(r1 + d), r2(r2 + d), c)ec(2r1r2 + dr1 + dr2)fc(r1, r2)

=
∑

a,b (c)

S(a(a+ d), b(b+ d), c)ec(2ab+ da+ db)
∑

r1≡a (c)
r2≡b (c)

fc(r1, r2)

=
1

c2

∑

u (c)

∑

v (c)





∑

a,b (c)

S(a(a+ d), b(b + d), c)ec(2ab+ (d+ u)a+ (d+ v)b)





×
∑

r1,r2

fc(r1, r2)ec(−ur1 − vr2).

We assume here that |u|, |v| ≤ c
2 . Note that as we expect fc(r1, r2) is mildly

oscillating, the sum
∑

r1,r2

fc(r1, r2)ec(−ur1 − vr2)
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is going to be negligible unless both u and v are relatively smaller than
c, which will be determined by the oscillation of fc(r1, r2). We quantify
this and then estimate the sum via Poisson summation formula in next two
sections.

For the rest two sections, we give an estimation of

∑

a,b (c)

S(a(a+ d), b(b + d), c)ec(2ab+ (d+ u)a+ (d+ v)b)

from [LS03] and prove Lemma 2.1.

2.3. Estimating fc(r1, r2). Recall that d ≪ R1−δ, y ∼ T , GT 1−ǫ1 ≪ R2,
and c ≪ R2G−1T−1+ǫ1 . For this and the next section, we further assume
that dRǫ2 ≪ c for some ǫ2 > 0. Let

∆(r1, r2) =
√

r1r2(r1 + d)(r2 + d)

α(x) =
N−1
∑

m=1

cm
y2m

x2m−1

ϕ(r1, r2) = α(
4π∆

c
) +

4π

c
(∆− r1r2 −

dr1
2

− dr2
2

)

and

gc(r1, r2) = ψ
(r1
R

)

ψ
(r2
R

)

(

4y2 +
16π2r1r2(r1 + d)(r2 + d)

c2

)−k/2−1/4

Then

fc(r1, r2) = gc(r1, r2) exp (iϕ(r1, r2)) .

Firstly,

∂k1+k2gc
∂r1k1∂r2k2

≪ c1/2R−1−k1−k2 ||ψ||2
W k1+k2,∞

. (2.3)

For r1 ∼ r2 ∼ R, we have

∆ = r1r2 +O(dR)

∆ri = r3−i +O(d)

∆riri = O(d2R−2)

∆r1r2 = 1 +O(d2R−2)

∂k1+k2∆

∂r1k1∂r2k2
= O(d2R−k1−k2) (k1 + k2 ≥ 3)

∂k1+k2

∂r1k1∂r2k2
(∆− r1r2−

dr1
2

− dr2
2

) = O(d2R−k1−k2) (k1 + k2 ≥ 1)
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and

αx = −c1
y2

x2
+O(T 4x−4)

αxx = 2c1
y2

x3
+O(T 4x−5)

∂kα

∂xk
= O(T 2x−1−k).

Hence

∂k1+k2ϕ

∂r1k1∂r2k2
≪ cT 2R−2−k1−k2 (2.4)

which implies that

∂k1+k2fc
∂r1k1∂r2k2

≪ c1/2

R

(

cT 2

R3

)k1+k2

||ψ||2
W k1+k2,∞

. (2.5)

Note that

cT 2

R3
≪ T 1+ǫ1

GR
≪
(

T 1+3ǫ1

G3

)1/2

≪ T (1+3ǫ1−3θ)/2 ≪ T−(3θ−1)/4.

From c≫ dRǫ2 , we also get

ϕr1 ∼ ϕr2 ∼ cT 2

R3
(2.6)

and

ϕrirj =
16π2αxx(4π∆/c)

c2
∆ri∆rj +

4παx(4π∆/c)

c
∆rirj +O(

d2

cR2
)

=
8π2αxx(4π∆/c)

c2
(2∆ri∆rj −∆∆rirj ) +O(

∆rirjT
4c3

R8
+

c

R2+2ǫ2
)

=
8π2αxx(4π∆/c)

c2
((2− δi,j)r3−ir3−j +O(dR)) +O(

T 4c3

R8
+

c

R2+2ǫ2
),

which implies

ϕrirj ∼
cT 2

R4
and |ϕr1r1ϕr2r2 − ϕ2

r1r2 | ≫
c2T 4

R8
. (2.7)

Lemma 2.5. Let f(x1, x2) be a real and algebraic function defined in a

rectangle D = [a, b] × [c, d] ⊂ R
2. Assume throughout D that

|fxixi | ∼ λ for i = 1, 2, |fx1x2
| ≪ λ, and

∣

∣

∣

∣

∂(fx1
, fx2

)

∂(x1, x2)

∣

∣

∣

∣

≫ λ2;

then
∫∫

D
eif(x1,x2)dx1dx2 ≪

1 + | log(b− a)|+ | log(d− c)|+ | log λ|
λ

.
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2.4. Poisson summation. Applying the Poisson summation formula for
the sum in r1 and r2, we get

∑

r1,r2

fc(r1, r2)ec(−ur1 − vr2) =
∑

j,k

B(j, k)

where

B(j, k) =

∫∫

fc(r1, r2)ec(−ur1 − vr2)e(jr1 + kr2)dr1dr2

=

∫∫

fc(r1, r2)e((j −
u

c
)r1 + (k − v

c
)r2)dr1dr2.

By (2.5), integrating by parts shows that

B(j, k) = O

(

c1/2R(max{|j|, |k|} − 1

2
)−A

(

T (3θ−1)/4
)−A

||ψ||2WA,∞

)

Therefore
∑

j,k

B(j, k) = B(0, 0) +O

(

c1/2R
(

T (3θ−1)/5
)−A

||ψ||2WA,∞

)

for any A > 0. Now for B(0, 0), we apply integration by parts to get
∫∫

fc(r1, r2)ec(−ur1 − vr2)dr1dr2

≪
∣

∣

∣

∣

∫∫

D
eiϕ(r1,r2)ec(−ur1 − vr2)dr1dr2

∣

∣

∣

∣

∫∫

|gc(r1, r2)r1r2 |dr1dr2

≪||ψ||2W 1,∞

c1/2

R

∣

∣

∣

∣

∫∫

D
eiϕ(r1,r2)ec(−ur1 − vr2)dr1dr2

∣

∣

∣

∣

where we can assume D is a rectangle such that (r1, r2) ∈ D implies r1 ∼ R
and r2 ∼ R.

Observe that by (2.6),
∫∫

D
eiϕ(r1,r2)ec(−ur1 − vr2)dr1dr2

has a stationary phase only when

u ∼ v ∼ c2T 2

R3
(2.8)

is satisfied.
If any of u or v does not satisfy this, then from (2.3), (2.4), and (2.6),

integrating by parts yields
∫∫

gc(r1, r2)e
iϕ(r1,r2)−

2πi
c

(ur1+vr2)dr1dr2 ≪ c
1

2R(
R2

cT 2
)A||ψ||2WA,∞

≪ c
1

2RT−ǫ2A||ψ||2WA,∞

for any A > 0, from the assumption c≫ dT ǫ2 .
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Now for u and v which satisfy (2.8), we use (2.7) and Lemma 2.5 to get
∫∫

D
eiϕ(r1,r2)ec(−ur1 − vr2)dr1dr2 ≪

R4

cT 2
logR

and therefore

∑

r1,r2

fc(r1, r2)ec(−ur1 − vr2) ≪ ||ψ||2W 1,∞

R3

c1/2T 2
logR. (2.9)

2.5. Kloosterman sums. In this section we give a bound of
∑

a,b (c)

S(a(a+ d), b(b + d), c)ec(2ab+ (d+ u)a+ (d+ v)b)

that is given in [LS03]. For fixed d, u, v, and integer γ, let

Sc(γ) =
∑

a,b (c)

S (a (γa+ d) , b (γb+ d) , c) ec(2γab+ (d+ u)a+ (d+ v)b).

Then for (c1, c2) = 1, we have Sc1c2(γ) = Sc1(γc2)Sc2(γc1).
For (c, 2γ) = 1, note that

a(γa+ d)x+ 2γab+ (d+ u)a

≡γx
(

a2 + 2(x̄b+ 2̄(d+ u)x̄γ̄ + 2̄dγ̄)a
)

(mod c)

and

− γx(x̄b+ 2̄(d+ u)x̄γ̄ + 2̄dγ̄)2 + b (γb+ d) x̄+ (d+ v)b

≡(v − x̄u)b− 4γx((d+ u)x̄+ d)2. (mod c)

Therefore

Sc(γ) =
∑

x (c)
(x,c)=1

∑

a,b (c)

ec (a (γa+ d)x+ b (γb+ d) x̄)

× ec(2γab+ (d+ u)a+ (d+ v)b)

=
∑

a (c)

ec(γxa
2)
∑

x (c)
(x,c)=1

ec
(

−4γx((d+ u)x̄+ d)2
)

∑

b (c)

ec((v − x̄u)b)

and by the evaluation of the Gauss sum, this is ≪ c3/2(v, c) if (v, c) = (u, c)
and 0 otherwise. Writing c = c1c2 with (2, c1) = 1 and c2|2∞, we infer that

Sc(1) = Sc1(c2)Sc2(c1) =

{

O((v, c1)c
3/2
1 c

5/2+ǫ
2 ) if (u, c1) = (v, c1),

0 otherwise
(2.10)

where we have bounded Sc2(c1) by c
5/2+ǫ
2 using the Weil’s bound.
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2.6. Proof of the theorem. Assume first that dRǫ2 ≪ c. Then by (2.9)
and (2.10), we have

∑

u (c)

∑

v (c)





∑

a,b (c)

S(a(a+ d), b(b + d), c)ec(2ab+ (d+ u)a+ (d+ v)b)





×
∑

r1,r2

fc(r1, r2)ec(−ur1 − vr2)

≪
∑

u∼v∼ c2T2

R3

(u,c)=(v,c)

(v, c1)c1c
2+ǫ/2
2

R3

T 2
logR||ψ||2WA,∞

≪c1c
2
2T

2R−3 logR||ψ||2WA,∞

provided that, for instance, min{3θ − 1, ǫ2}A > 100.
Therefore the left hand side of (2.2) is

=
∑

c<dRǫ2

+
∑

dRǫ2<c≪R2G−1T−1+ǫ1

≪ǫ dR
1+ǫ2+ǫ||ψ||2L∞ + T 2R−3+ǫ









∑

c2≪R2G−1T−1+ǫ1

c2|2∞

c32
∑

c1≪R2G−1T−1+ǫ1/c2

c21









||ψ||2WA,∞

≪ǫ2

(

dR1+2ǫ2 +
R3+2ǫ2

T 2
T 1+3ǫ1−3θ

)

||ψ||2WA,∞

≪ǫ2 dR
1+2ǫ2 ||ψ||2WA,∞

since 3θ − 1 > 3ǫ1 > 0. This establishes (2.2) which implies Lemma 2.1,
hence Theorem 1.1.

2.7. The case m = 0. Let G(s) be the Mellin transform of ψ:

G(s) =

∫ ∞

0
ψ(y)ys−1dy.

Then from the Mellin inversion transform,

∑

n 6=0

ρφ(n)
2ψ

(

π|n|
X

)

=
1

πi

∫

(2)

∑

n≥1

ρφ(n)
2

ns

(

X

π

)s

G(s)ds

=
ρφ(1)

2

πi

∫

(2)

ζ(s)

ζ(2s)
L(s, sym2φ)

(

X

π

)s

G(s)ds

=
ρφ(1)

2

πi

∫

(1/2)

ζ(s)

ζ(2s)
L(s, sym2φ)

(

X

π

)s

G(s)ds

+
2X

π
ρφ(1)

2L(1, sym2φ)

∫ ∞

0
ψ(y)dy.
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Now that ρφ(1)
2L(1, sym2φ) = 4, we have

∑

n 6=0

ρφ(n)
2ψ

(

π|n|
X

)

− 8X

π

∫ ∞

0
ψ(y)dy

=
ρφ(1)

2

πi

∫

(1/2)

ζ(s)

ζ(2s)
L(s, sym2φ)

(

X

π

)s

G(s)ds.

Using the approximate functional equation, we can represent L(s, sym2φ) as
a smooth sum of λφ(n

2)n−s of length at most t1+ǫ
φ . By smoothly summing

over φ, and following the proof of the case when m ≥ 1, we conclude the
proof of (1.7).

3. Lower bound for the number of sign changes on a compact

geodesic segment

Let

M1(φ) = sup
a<α<β<b

∣

∣

∣

∣

∫ β

α
φ(iy)

dy

y

∣

∣

∣

∣

.

Then
∑

T<tφ<T+1

M1(φ)
2

≪
∑

T<tφ<T+1

t
−1/2
φ

(
∫ 2tφ

0

∣

∣

∣

∣

L(
1

2
+ it, φ)

∣

∣

∣

∣

(1 + |t− tφ|)−1/4 min{1, 1
t
}dt
)2

≤
∑

T<tφ<T+1

t
−1/2
φ

(

∫ 2tφ

0

∣

∣

∣

∣

L(
1

2
+ it, φ)

∣

∣

∣

∣

2

(1 + |t− tφ|)−1/4 min{1, 1
t
}dt
)

×
(
∫ 2tφ

0
(1 + |t− tφ|)−1/4 min{1, 1

t
}dt
)

≪T ǫ

where we used

∑

T<tφ<T+1

∣

∣

∣

∣

L(
1

2
+ it, φ)

∣

∣

∣

∣

2

≪ (T + t2/3)1+ǫ ([Jut04])

in the last inequality. Therefore among even Maass-Hecke cusp forms in

{φ | T < tφ < T +1}, all but O(T
5

6
+ǫ) forms satisfy M1(φ) < t

− 5

12
− 1

3
ǫ

φ . Note

that for any function f on [a, b], denoting the number of sign changes of f
by S(f), we have

S(f)M1(f) ≥ ||f ||L1 ≥ ||f ||2L2

||f ||L∞

. (3.1)

Therefore from Corollary 1.4 and sup |φ(z)| ≪ǫ t
5/12+ǫ
φ ([IS95]), we get The-

orem 1.8, since S(φ) ≪ Nβ(φ) [GRS12].



18 JUNEHYUK JUNG

Above estimate also shows that almost all Maass-Hecke cusp forms in

{φ | T < tφ < T + T 1/3} satisfy M1(φ) < t
− 1

2
+ǫ

φ . Therefore if we apply

Corollary 1.7 instead of the L∞ estimate given in [IS95], we obtain Theorem
1.9.

Remark 3.1. From the Hölder’s inequality, we have

||f ||pLp ||f ||p−2
L1 ≥ ||f ||2(p−1)

L2

for any p > 2. If we assume L∞ conjecture for Maass forms, then
∫ b

a
|φ(iy)|pdy ≪p,ǫ t

ǫ
φ.

Therefore for a sufficiently long β, a sharp upper bound for ||φ||Lp(β) any

p > 2 yields Nβ(φ) ≫ǫ t
1/2−ǫ
φ under the Lindelof Hypothesis, or Nβ(φ) ≫ǫ

t
1/6−ǫ
φ unconditionally.
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