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ABSTRACT. We define certain deviation modules for the Hasse local-global
norm theorem and Hilbert’s theorem 90 for the p-units over the cyclotomic Zp-
extension of a number field. We show that a necessary and sufficient condition
for the two deviations are isomorphic over all sufficiently large intermediate
fields in terms of an arithmetic property of the p-units which is called the
generalized Gross conjecture. The proof is based on deep results of Kuz’'min
and Iwasawa on infinite class field theory. We will prove the Kuz’'min’s main
result in a totally different way using the genus theory for p-ideal class group
which depends on cohomology theory rather than the infinite class field theory
used by Kuz’'min and describe an explicit isomorphism.

1. INTRODUCTION

Let k& be a number field and p an odd prime. For an extension field L of k, let
Np /i denote the norm map from L to k and Jy, the idele group of L. For a finite
set T of primes of k, let S be a subgroup of T-units U (T) of k.

We define the deviation module HSg /1, (Sk ®zZ,) of the Hasse local-global norm
theorem and the deviation module HT i/ ((Sk ®z Z;) of the Hilbert’s theorem 90
for the p-units over the cyclotomic Zj-extension of k.

Let HSk /1 ((Sk ® Zyp) be a compact subgroup defined as

(SK/k ® Zp)loc

ISR O ) = S 2

where
(S ® L) = lim ((Sk " Npjpdr) @ Zy)
kCLCK
and
(S ®Ly)E° = lim ((Sk N Np/xSL) © Zp)
kCLCK

are the inverse limits with respect to the inclusion maps for all finite subextensions
L of K over k. Similarly for any Galois extension K/k, we let

HT g1 (Sk @ Zp) = lim H'(G(L/k),SL ® Zp)
kCLCK
where the direct limit is taken for all finite cyclic extensions L of K over k.

In the following theorems let ko = k3 = J,,50kn be the cyclotomic Z,-
extension of k with k,, the unique subfield of k., of degree p" over k. For a field L,
let Sg, = UL (p) be the p-units of L. Let I denote the procyclic group G (koo /k) and
for each n > 0, let I';, = G(koo/ky) be the unique subgroup of I' with index p™.

1



2 SOOGIL SEO

Theorem 1.1. For all sufficiently large n and m — n,
torg, (HSk__ /k, (Skoe ® Zp)) = HTy,, ki, (Sk,, @ Lp).

In proving Theorem 1.1, a crucial step is the following result Proposition 1.2
of Kuz’min. We prove it in a completely different way using only the cohomology
theory without the infinite class field theory as was used in the original proof
of Kuz'min. In special we do not use complicate topological properties of the
idele group equipped with locally compact topological space. The only topological
property used in our proof is the compactness of a finite Z-module after tensoring
with Z,. Let S :=S,, = {v|p} be the set of primes of k,, dividing p. Let Cl(k,,) be
the ideal class group of k,, and let

Cln(S) := Cl(kn)/(cl(v))ves
be the S-ideal class group of k,, where cl(v) € Cl,, is the ideal class containing v.
We define the Tate module T),(k) of k following Kuz'min as the inverse limit of
Cl,,(S) with respect to the norm maps,
T, (k) := @(Cln(S) ® Zp).
For each generating class (cl(a,)®1), € T,(k)" and a,, € k)¢ such that (y—1)a,, =
an Oy, (S), let
Voo : Tp(k)" — HSp /i (Skoe ® Zy)
be defined as
Yoo ((cl(a,) ® 1)) = Nkn/k(an) ®1
which is well defined modulo Ny, /i (Sk, (S) ® Z,) for all n.

Proposition 1.2. 1, defines the isomorphism
Yoo : Tp(k)T 5 HSp_ i, Sk ® Zy).

In the original form of Proposition 1.2, the isomorphism hidden under infinite
class field theory was not defined. Our proof provides us with an explicit description
of the isomorphism 9.

We briefly introduce following Iwasawa (see §4 of [4]) and Kolster (see §1 of [6])
equivalent forms of the generalized Gross conjecture using the cohomologies over
I
i) Ag(koo)! < o0,

ii) Hl(F7 AS(koo)) =0,

where Ag(koo) is the p-part of the S-ideal class group of k¢,

iii) T, (k)r < oo,

iv) T, (k)' < oo.

The equivalence of i), ii) is explained in §4 of [4] and the equivalence of i), iii) and
iv) is explained in Theorem 1.14 of [6].

Finally we will show that the generalized Gross conjecture is equivalent to the
claim that the deviation modules of Hasse’s local-global norm theorem for the p-
units and Hilbert’s theorem 90 for the p-units over the cyclotomic Z,-extension of
k are isomorphic for all sufficiently large intermediate fields.

Theorem 1.3. The generalized Gross conjecture is true for all k, with n > 0 if
and only if for all sufficiently large n and m — n,

HSy. /k, (Skoo ® Zp) = HTy,, /i, (Sk,, @ Zp).
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2. PROOFS OF THE MAIN RESULTS

For a Galois extension K/k, let S, and Sk be submodules of £* and respectively
K*. We define the deviation HSk /,(Sk) of Hasse’s local-global norm theorem for
S, over K/k to be

s,
HSk/1(Sk) = —5
S/
where
3}271@ = ﬂ (Sk N NprJr)
kCLCK
and

S8 =) (SknNNLxSp)
kCLCK
for all finite subextensions L of K over k.
We will define another deviation of Hilbert’s theorem 90. We first define for a
finite extension. If K/k is a finite cyclic extension with generator o, then we also
define the deviation HT g /1(Sk) of Hilbert’s theorem 90 for S, over K/k to be

(SK) Nk )i

HT g1 (Sk) = (- 1Sk

where (SK)NK/k denotes the kernel of the norm map Ng ;, : Sxk — k™. The last
deviation is just one dimensional Tate-cohomology H'(G(K/k),Sk) of S.. For a
Galois extension K/k, we let
HTx)(Sk) = lim HTp)(Sp) = lim HY(G(L/k),SL)
kCLCK kCLCK
where the direct limit is taken for all finite cyclic extension L of K over k.

For a field L, if S, = L* is the full multiplicative group of L, then it is obvious
that for any Galois extension K/k,

HSg/k(Sk) = HT g1 (Sk) = 1.

For a finite set T of primes of k, let Sk be a subgroup of T-units U (T) of k.
Then we also define a compact subgroup HS g/, ((Sk @ Zj) to be

HSk/u(Sk ®@ Zp) = lim HSp/u(SL @ Zyp)
kCLCK

for all finite subextensions L of K over k. Then it follows from the compactness
that
(Sk/k © Zp)'°

S O ) = (5, @ 2,0

where
(Sk/k ® L) = lim ((Sy N Npswdr) ® Zy)
kCLCK
and
(Sk/p ®Zp)¥° = lm ((SyNNpSL) ® L)

kCLCK
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are the inverse limits with respect to the inclusion maps for all finite subextensions
L of K over k. Thus we have

1&1 ((SkﬂNL/kJL)@)Zp): m (8k®Zp)ﬂNL/k(JL®Zp)
kCLCK kCLCK

@ ((SkﬂNL/kSL)®ZP): ﬂ (Sk®Zp)ﬂNL/k(SL ® ZLp).
kCLCK kCLCK

Similarly for any Galois extension K/k, we let

HTK/k((SK®Zp) = h_I)n HTK/k(SL/k®Zp)
kCLCK
—  lm H(G(L/K).S L)
kCLCK
where direct limit is taken for all finite cyclic extensions L of K over k.

As mentioned in the introduction we start with a deep result of Kuz’'min on
the Tate module of a number field k. He proves the isomorphism using infinite
class field theory (see Proposition 1.1 of [10] and Proposition 7.5 of [7]). We will
prove Proposition 2.1 in a different way where we do not use topological properties
of locally compact idele groups in infinite class field theory as was needed in the
Kuz'min’s original proof.

For each generating class (cl(a,) ® 1),, € T,(k)' and «,, € k) such that (y —
Da, = @, 0y, (5), let

Voo + Tp(k)" — HSp_ k(S ® Zy)
be defined as

Yoo((cl(an) ® 1)) = Ny, sr(an) ©1
which is well defined modulo Ny, /1 (Sk, (S) ® Z,) for all n.

Proposition 2.1. For a field L, let S;, = Ur(p) be the p-units of L. Then there
exists an isomorphism

Yoo : Tp(k)T 5 HS 1 (Shoe @ Zp).

Proof. Let L/k be a finite Galois extension. For a finite set S of finite primes of k,
let I1(S), Px(S) and Ug(S) be the group of S-ideals of k, the subgroup of principal
S-ideals in It (S) and the S-units of k respectively. Similarly we define Iy, (.S), PL(.S)
and UL (S) as the the group of S’-ideals of L, the subgroup of principal S’-ideals
in I,(S) and the S’-units of L respectively where S’ denotes the prime ideals of L
dividing the prime ideals of S.

It follows from Pr(S) = L*/Ui(S) and the S’-ideal class group ClI(S) =
I1.(S)/PL(S) that there exist exact sequences of G-modules

(1) 1 — PL(S)Y — I(8)¢ — CI1(8)¢ — HY (G, PL(S)) — 1,
(2) 1 — Up(S) — kX — PL(S)¢ — HY(G,UL(S)) — 1,

(3) 1 — H'(G, PL(8)) — H*(G,UL(S)) — H*(G,L").
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From the equation (1) and Cl(S) = Ix(S)/Px(S), there exists the commutative
diagram

1 —— Pu(S) —— L(S) —— ClL(S) —— 1

(
| -

1 —— P(S)¢ —— I(S)Y —— Cl1(5)¢ —— HYG,PL(9)) —— 1.
Applying the snake lemma to the above diagram, we obtain
(4) 1 — ker(uh,r) — HYG,UL(S)) — IL(S)/Ix(S)
— coker(up,. 1) — H' (G, Pp(S)) — 1
where we used
PL(S)%/Pi(S) = H'(G,UL(S))

from the equation (2).
Moreover if G(L/k) = (v) is cyclic, then from the equation (3), it follows that

Ui(S)N NL/kLX
NppUL(S)
where the isomorphism is the connecting homomorphism defined by

(a) = aOr(S) = Npjp(a)

for the ring O (S) of S-integers of L.
By letting im(1,(S)%) the image of I1,(S)% inside Cly,(S)¢, we have the following
isomorphism

1%

HY(G, PL(S)) = H™(G, PL(S))

ClL(9)¢ Uk(S) N Np L™
im(IL(S)9)  Np,pUL(S)

where the isomorphism is defined to be for each class cl(a) € Cl1(S)Y of a € I1,(S)
and o € L* such that (y — 1)a = aOL(S)

Yr(cl(a)) = Npsi(@)

which is well defined modulo Ny, /,Ur(S). Since all groups above are p-group, we
have the following isomorphism of compact groups

ClL(8)° 7, _ (Uu(S)NNL L) L,
im(IL(S)G X Zp) - NL/k(UL(S)) X Zp

It follows from the trivial isomorphisms
ClL(9)° ®Z, 2 (ClL(S) ® Zp)¢, Np(UL(S)) ® Zp = Np, i (UL(S)) ® Zp)
that

Y

e (CIL(S) ® Z,) _ (Un(S) N N LX) @ Z,
Pim(In(9)C ©Z,) — Npw(Un(S) @ Zy)
For a subfield L’ of L over k and for each class cl(a) € Clp(S)¢ of a € I1(S)
such that (v —1)a = aO(S), by applying the norm map Ny, /1., we have
(’}/ — 1)NL/L/(a) = NL/L’(’Y — 1)a = NL/L/(OZOL(S)) = NL/L/(()()OL/(S)

since the extensions k C L' C L are abelian. Hence we have

Y (Npyrel(a)) = Ny (Npyp(e) = Np (o) = ¢r(cl(a))
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which induces the following commutative diagram

Q L)QL

(5) J{NL/L’ lid

QL/ —)le @L/

where {2, and ©, represent
(Clp/(S) ® 7,)G /%)  (Ue(S) NNy L) @ Z,
im(IL/(S)G(L//k) ®Zp)7 L= NL’/k(UL’(S) ®Zp)

Now let L vary all subfields k, of the cyclotomic Z,-extension of k. For an
inverse system of Galois modules {M,, },,>0 of G, = G(k,/k), it is obvious that

QL/ =

. 0 1 0 _ 0 .
lim H(Gyy, My,) = lim HO(Goo, M) = H(Goo, lim M,).

By taking the inverse limits in (5) with respect to the norm maps on the left and
the inclusion maps on the right, ¢, induces the isomorphism 9, = lim vy,
(Cln(S)®Z) . (S) N Ny, /xky) ® Zy

(G Ly mm W(5) 9 7,)

(6)  w:lim

Since all the groups appearing above are compact, by taking the inverse limits
which are exact over the following exact sequence

(Cl,(S) ® ZP)G"

(L, (S)0 ©7Z,)

1 — im(I,(8)%" ® Z,) —> (Cla(S) ® Z,)C"

it follows that
(Cl(S) ® Z,)Cn . (Im(CL,(S) @ Zy))"

. n ~ %
® O ()5 ©2,) T im(1a(5)% ©7,)
and similarly that
®) o Ok(S) ﬂNkn/kk )®Zy  Um(Uk(S) N Ny, k) @ Zyp

Note that each prime not in S is unramified over ko /k since S contains all
primes lying over p. If a € I,,(S)%» then for each prime ideal B lying over a prime
p dividing a, we have

[[®la

Blp

since the Galois group acts transitively on I,,(S) and hence

Nkn/k(H P) = pE e(P)F(P) — pp"
PBlp

where e(B)(= 1) and f() represent the ramification index and respectively the
residue class degree of P over p. It follows from the definition of the norm map
over the ideal class group that

(9) lim i (7, (8)% =0



ON ARITHMETIC PROPERTIES OF THE p-UNITS 7
where the inverse limits are taken with respect to the norm maps. It follows from
(7) and (9) that

(Cln(S) ® Zp)G" ~

(10) lim e ez, = (m(Ch(S) @ 7)) .

Hence it follows from (6) and (10) that

(Clu(S) ©7,)%

im(7,, ()% ® Zp)

(Uk(S) N N, jukr) ® Zy
Nkn/k(Un(S) ® ZP)

1%

&

Tp(k)r = (T&l(CZn(S) ® Zp))F

1%

&

It follows from (8) that the last term above is isomorphic to
lim (UL (S) 0 Ny, k) ©Z,

hm Ny, /i (Un(S) © Zy)
This completes the proof of Proposition 2.1. O

= HSy /i (St ® Zp).-

Let Ypmn = (mody!™) denote the fixed generator of G(k,,/ky).

Theorem 2.2. For a field L, let S, = UL(p) be the p-units of L. Then for all
sufficiently large n and m — n,

torz, (HSy__ /k,, (Sko. ® Zp)) = HTy /1, (Sk,, @ Zp).

Proof. For each n > 0, let O, and I,, be the ring of integers and the fractional
ideals of k,, respectively. For m > n, let

Jjn,m): Cl,(S) — Cl,,(S)
be the map induced from the natural map i(n,m) : I,, — I,,, defined as
i(n,m)(a) = aOy,.
The following theorem is due to Kuz’min(see Theorem 3.1 of [7]).

Theorem 2.3. For all sufficiently large n and m —n, the order of ker(j(n,m)) is
stabilized and

ker(j(n, m)) & torz, (T, (k)"™)

where ker(j(n,m)) denotes the kernel of j(n,m) and torz, (T,(k)') the Z,-torsion
part of Tp(k)'™.

It is also well known by Iwasawa from Theorem 12 of [3] that for all m >n > 0,
ker(j(n,m)) = H (G(km/kn), Sk, )-
It follows from the flatness of Z, over Z that
HY(G(km/kn), Sk,, @ Lp) = H'(G(km/kn), Sk,.) ® Zp
H(G(km /kn), Sk,.)

where the last isomorphism follows from the fact that H(G(k,,/ky),Sk,, ) is a
p-group. From Proposition 2.1 we complete the proof of Theorem 2.2. ([l

1

Il
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We describe the deviations in term of the universal norm and the norm compara-
ble properties. For a subgroup H,, of k., let @m>n(Hm ®Z,) be the inverse limit

of H,, ® Z,, with respect to the norm maps. Let 7 denote the natural projection

7o lim (Ho © Zp) = H © Ly,

m>n

The norm compatible subgroup (H, ® Z,)°°™P and the universal norm subgroup
(Hn ® Zp)"™Y of H,, ® Z,, are defined as follows

(Hn @Zp)"™™ i= () Non(Hn ©@Zp), (Hn @ Zp)*™ := w(lim (Hn © Zp)).
m>n m>n
Note that if H,, is a finite type over Z, then the two modules are identical
(Hn ® Zp)comp _ (an ® Zp)univ.

For a finite cyclic extension K/k and for a finite set S of primes of k, let Ug(S)
be the global S-units of k. Let S’ be the set of primes of K lying over each prime
vES,

S ={wlv; ve S}
We also let Uk (S) := Ug(S’) denote the global S’-units of K. Let

Jrs = [ Uox [] &
we S’ wes’

be the S-idele group of K where we identify Ug (S) with a subgroup of Jg g via
the diagonal imbedding éx s : Ux(S) — Jk,s. For K = k, and S = {v|p}, we
write

Un(p) = Ukn(S)7 6n = 5kn,5'~
We have the following exact sequence

1 ker(¢n) — Un(p) * (G, Ji, 5)
where G,, = G(ky/k) denotes the Galois group of k, /k and
d)n(oz) = 577,(04) mod Nann,S

the natural map induced from d,,. Then Hasse’s local-global norm theorem for k*
implies that
NnUn(p) C ker(¢n) = Ug(p) N Nnk;.

By tensoring with Z,, the exact sequence induces

1 — ker(d,) = ker(dn) ® Zy — Ur(p) ® Zp 2 H(Gr, Ji, 5)
together with
Ny (Un(p) @ Zyp) C kex(¢p) @ Zy = (Ur(p) N Npk)y ) @ Zy.

Then
ker(¢..) := () ker(¢,) = [ (Un(p) N Nuk)) @ Zp).

n>0 n>0

Hence we are led to
(Sk,, ® Zp)'*® =ker(d), (Sk, ® Zp)®° = (Un(p) @ Zy)™,

(Sk, ®Zp)° _ ker(dy,)
(Sk, ®Zp)Ele — (Un(p) @ L)

HS;%O/;%(S ® Ly )



ON ARITHMETIC PROPERTIES OF THE p-UNITS 9

The statement that the deviation modules of Hasse’s local-global norm theorem
for the p-units and Hilbert’s theorem 90 for the p-units over the cyclotomic Z,-
extension of k are isomorphic for all sufficiently large intermediate fields is now
equivalent to the generalized Gross conjecture.

Theorem 2.4. For a field L, let S, = Uy, (p) be the p-units of L. The generalized
Gross conjecture is true for all k, with n > 0 if and only if for all sufficiently large
n and m—n,

HSkw/kn (Sko, ® Zp) = HTy, k., (Sk,, ® Zyp).

Proof. Firstly we claim that the generalized Gross conjecture is true for all k,, with
n > 0 if and only if for all sufficiently large n and m — n,

HSkm/kn (Skoo ® Zp) = HTkm/kn (Skm)-

Suppose now that the generalized Gross conjecture is true for all k, with n > 0.
Since T, (k)'» = T, (k,)', Theorem 2.3 and the generalized Gross conjecture (iv)
imply that for all sufficiently large n and m — n,

ker(j(n,m)) = Tp(kn)F”.

Hence Propositions 2.1 imply the isomorphism. The converse direction is obvious
from Proposition 2.1 and Theorem 2.2 together with the fact that the generalized
Gross conjecture descends over field extensions.

Secondly we show that the claim is equivalent to the theorem. It follows that

HY(G(km/kn),Sk,, @ Zp) = HY(G(km/kn),Sk,,) @ Z,p
HY(G(kp /kn), Sk, )-

I

Hence it follows that
HSkw/kn (Skoo (024 Zp) = HTkm/kn (Skm) = HTkm/kn (Skm [029] Zp).
This completes the proof of Theorem 2.4. O

Note that the generalized Gross conjecture is true for an abelian field k. Hence
if k£ is abelian then for all sufficiently large n and m — n,

HSkm/kn (Skoc ® Zp) = HTkm/kn (Sk ® Zp).

It could be also interesting to prove Theorem 2.4 using only the cohomology theory.

m
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