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Abstract

Let M be a closed oriented Riemannian manifold of dimension 5
which admits a Riemannian metric of positive sectional curvature. In
this short paper, we point out that under certain lower bound of the
orders of isotropy subgroups, every pseudo-free and isometric S*'-action
on M cannot have more than five exceptional circle orbits. As a con-
sequence, we conclude that such a pseudo-free S'-action on S° cannot
have more than five exceptional circle orbits. This gives a new result
related to the Montgomery-Yang problem posed in [9].
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1 Introduction and Main Results

Throughout this paper, every odd dimensional sphere S?~1 (k > 2) is
assumed to be an unit sphere embedded in the Euclidean space R?* unless
stated otherwise.

The main goal of this paper is to address the problem posed by Mont-
gomery and Yang in [9] about the number of exceptional orbits of the unit
5-sphere S° equipped with a pseudo-free S'-action. Recall that a pseudo-free
S'-action on a sphere S?*~1 (k > 2) is, in general, defined to be a smooth
Sl-action which is free everywhere except for finitely many exceptional circle
orbits whose isotropy subgroups are Z,,, ..., Z,,, where r1, ..., r, are pair-
wise relatively prime. According to a theorem of Smith, the condition that
r1, ..., 'y are pairwise relatively prime is actually superfluous for pseudo-
free circle actions on any closed (2n + 1)-dimensional manifold which has
the integral homology of a sphere (see, e.g., (2.2) in [9] or p. 43 in [1]). For



pseudo-free circle actions on a general closed (2n+ 1)-dimensional manifold,
however, it is not automatic. Thus, in this paper we will not require that
ri, ..., p be pairwise relatively prime for pseudo-free circle actions on a
general closed manifold. As a consequence, the number of exceptional circle
orbits obtained in Theorem 1.1 would be more optimal (cf. Conjecture 2 in
).

It is well-known by a work [11] of Seifert that every pseudo-free S'-
action on S2 is linear and so has at most two exceptional orbits. On the
other hand, it has been shown by Montgomery and Yang in [9] that given
any natural number n, there is a pseudo-free S'-action on a homotopy 7-
sphere whose number of exceptional orbits is exactly equal to n. In [10],
Petrie proved similar results in all higher odd dimensions. So there exists a
drastic difference between odd dimensions 3 and 7 or higher.

However, it has still remained as an interesting open question whether
or not a pseudo-free S'-action on S° (or homotopy 5-sphere) has at most
three (or more) exceptional orbits. This is usually called the Montgomery-
Yang problem in the literature. As far as we know, there are almost no
known results regarding this problem, despite some attempts. Recently,
this problem has been re-casted by J. Kollar as an algebraic Montgomery-
Yang problem in [8], and some important partial results to the algebraic
version have been obtained by J. Keum and D. Hwang in [5, 6].

In this paper, we show some new result about the original Montgomery
and Yang’s problem under the lower bound of the orders of isotropy sub-
groups. In fact, it turns out to be a direct consequence of the following more
general theorem.

Theorem 1.1. Let M be a closed oriented Riemannian manifold of dimen-
ston 5 which admits a Riemannian metric of positive sectional curvature,
and let S act pseudo-freely and isometrically on M with isotropy subgroups
Zy,....,2,, . If all the r;’s are greater than or equal to 61, then n s less
than or equal to 5, i.e., the pseudo-free S*-action on M cannot have more
than five exceptional circle orbits.

It is crucial that the dimension of the Riemannian manifold M is 5. In
other words, the proof of Theorem 1.1 does not apply to a positively curved
manifold of dimension > 7 with a pseudo-free and isometric circle action.
We also remark that it is not true in general and seems to be well-known that
every effective S'-action on a closed oriented non-negatively (or positively)
curved Riemannian manifold can be made isometric.

Since the sphere S° is assumed to be the unit sphere embedded in RS,
it follows that it can be equipped with a Riemannian metric of positive



sectional curvature such as the canonical metric on S°. Hence we have the
following corollary which gives some result related to the Montgomery-Yang
problem.

Corollary 1.2. Let S' act pseudo-freely and isometrically on S® with isotropy
subgroups Zy., ..., 2Ly, . If all the r;’s are greater than or equal to 61, then n
is less than or equal to 5, i.e., the pseudo-free S'-action on S® cannot have
more than five exceptional circle orbits.

As mentioned above, the proof of Theorem 1.1 does not apply to an
odd dimensional sphere S?*~! (k > 4), and so this fits well with the result
of Montgomery and Yang in [9]. We remark that there are some cases for
which the lower bound 61 can be improved (see, e.g., Corollary 8 in [12]),
but we do not pursue it in his paper.

Our method of the proof of Theorem 1.1 is just an application of some
well-known techniques in [4] developed by Hsiang and Kleiner when they
prove a theorem that every closed oriented positively curved Riemannian
manifold of dimension 4 with an isometric S!'-action is homeomorphic to S4
or CP? (sce [7] for a recent further development).

We organize this paper as follows. In Section 2, we collect some basic
definitions and facts for later use. In Section 3, we give a proof of Theorem
1.1 by essentially applying the techniques of Hsiang-Kleiner and a result of
Yang in [12].

2 Preliminaries

In order to give a proof of Theorem 1.1 in Section 3, in this section we
collect some basic facts and definitions for the sake of reader’s convenience
(see, e.g., [3] for more details).

We first consider the geometry of the orbit space X = M/S'. To do
so, we need to recall some basic notions of Alexandrov geometry. A finite
dimensional length space (X, dist) is called an Alezandrov space if it has cur-
vature bounded from below. It is true that when M is a complete connected
Riemannian manifold and G is a compact Lie group acting effectively on M
by isometry, the orbit space X can be equipped with the orbital distance
metric induced from M. Hence the distance between two points p and ¢
in X is given by the distance between two orbits G - p and G - ¢ as sub-
sets of M. Furthermore, if M has sectional curvature bounded from below,
sec-curv(M) > k (resp. > k), then the orbit space X is an Alexandrov space
with curvature bounded from below such that sec-curv(X) > k (resp. > k).



We will also need the notion of the space of directions of a Alexandrov
space X at a point p € X. In general, it is defined to be the completion of the
space of geodesic directions at p € X. As a particular case, when X is given
by an orbit space M /G, the space of directions at a point p € X, denoted
SpX, consists of geodesic directions and is isometric to SpL /Gp, where Spl
denotes the normal sphere to the orbit G -p at p € M. Here we assume that
p maps to p in X, and G, denotes the stabilizer subgroup of G at p.

Next, let {p;} be the set of distinct points in M (or X). For a pair of 4
and j, define I';; be the set of minimizing normal geodesics from p; to p;.
Then for three distinct 4, j, k, the angle between p; and p; at p; is defined
to be

Zp;(pj, k) = min{ Z(7}(0),7(0)) | v; € Tij, 7 € Tir}
We also need the notion of n-extent of a compact metric space. To be

precise, the n-extent xt,(X) for n > 2 of a compact metric space (X, d) is
defined to be the maximum average distance between n points in X, i.e.,

2 n
1<i<j<n

Given a positive integer r and integers k,l coprime to r, let L(r;k,I)
be the 3-dimensional lens space which is the quotient of a free isometric
Z,,-action on the unit sphere S defined by

wkl Y/ S3 - ‘937 (gv (Z1>Z2)) = (gkzlvngQ)a

where g is a generator of Z, and (z1, 20) € S3 C C2. Then D. Yang showed
the following estimate of n-extent of lens space L(r;k,1) in [12].

Lemma 2.1. Let L(r;k,l) be a 3-dimensional lens space of constant sec-
tional curvature 1. Then we have

xty(L(r; k,1))

(2.2) = e (COS(%)COS <\7/r7“> - % ((COS(:/;) - cos,(:)>2

+sin2(ag) (Wsm(:) - sin(:/:j))2>% :

where ay = and [z] denotes the greatest integer less than or

™
202-[45] )
equal to x.
In particular, if v > 61, then xts(L(r; k,1)) is less than 5.



3 Proof of Theorem 1.1

The aim of this section is to give a proof of Theorem 1.1. To do so, from
now on we assume that the circle S' on M always acts pseudo-freely and
isometrically.

To begin the proof of Theorem 1.1, we also assume that there are six
exceptional circle orbits {F;}9_; and then we will derive a contradiction.

For each i (1 < i < 6), let p; be a point in E;. Since every excep-
tional circle orbit is isolated, the six circle orbits { F;}%_; map to six distinct
points p; in the orbit space X. Recall that X is an Alexandrov space with
sec-curv > 0. Hence it follows from Toponogov’s theorem for Alexandrov
spaces that the sum of the angles of a geodesic triangle in X is greater than
or equal to w. Since there are twenty triangles obtained by connecting each
pair of distinct points in {p;}$_; by minimal geodesics, the total sum of the
angles in the twenty triangles is greater than or equal to 207.

Note also that for each point of {pi}?:p the tangent space T, M de-
composes as Ty, E; @ (T, E;)*, and the normal space (T}, E;)* is invariant
under the free action of the isotropy subgroup Z,, of p;. Thus the quo-
tient of the unit normal sphere S3 C (T, E;)* is the lens space L(r;; ki, 1)
(1 <kl < T'Z‘) and so SpiX = L(?‘Z‘; kz,lz)

By assumption, since all the r;’s are greater than or equal to 61, it follows
from Lemma 2.1 that the 5-extent xt5 of the lens space satisfies

wts(L{ris ki i) < 5
This implies from (2.1) that for any pairs of distinct points {z;}5_, in
L(ri; ki, l;), we have

(3.1) N dlzga) < g -10.
1<j<k<5

Note that d(z;,zy) is the same as the angle between two geodesics from p;
to points x; and x; which are considered to lie in X, respectively. Thus,
by summing over all the pairs formed by each point in {p;}$_,, it follows
from (3.1) that the total sum of the angles in the twenty triangles obtained
by connecting each pair of distinct points in {p;}%_; by minimal geodesics
should be, this time, less than % - 10 -6 = 207. But this is clearly a contra-
diction. Therefore, every pseudo-free and isometric circle action on a closed
oriented positively curved Riemannian manifold as in Theorem 1.1 can have
at most five exceptional circle orbits. This completes the proof of Theorem
1.1.
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