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Abstract

The aim of this paper is to affirmatively resolve a long-standing con-
jecture in algebraic topology, called the rank conjecture, related to the free
p-rank of abelian groups acting freely on products of spheres. To be precise,
let (Z/p)r act freely on Sn1 × Sn2 ×·· ·× Snl for a prime p and let lo denote
the number of odd dimensional spheres in the product of spheres. In this
paper we show that, if p is odd prime, then r is less than or equal to lo and
the free p-rank of Sn1 ×Sn2 ×·· ·×Snl is equal to lo. On the other hand, if p
is equal to 2, it is shown that r is less than or equal to l and the free p-rank of
Sn1 ×Sn2 ×·· ·×Snl is equal to l.
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1 Introduction and Main Results

Our main concern of this paper is to find the free p-rank, or simply free rank,

max{r ∈ Z≥0 |(Z/p)r acts topologically and freely on X}

defined for any topological space X and any prime number p.
It is well known by a work [14] of Smith that if a group acts freely on a sphere

Sn, then its abelian subgroups should be cyclic. Thus in this case the free rank
is less than or equal to 1. Moreover, the following fact has been known from the
classical Smith theory (refer to [9], Theorem 1.1).

Theorem 1.1. The free p-rank of Sn is equal to 1 for odd n and all primes p, and
even n and p = 2, and is equal to 0 for even n and all primes p > 2.
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A natural generalization of this result to products of spheres has been estab-
lished by Adem and Browder in their paper [2], Theorem 4.2:

Theorem 1.2. Let (Z/p)r act freely on (Sn)l := Sn×Sn×·· ·×Sn︸ ︷︷ ︸
l times

for odd prime p.

Then r should be less than or equal to l.

In fact, even for p = 2 they proved an analogous result in the same paper [2],
when n 6= 1,3,7. Later, in his paper [15] Yalçin affirmatively resolved the case for
p = 2 and n = 1, while other two cases (i.e., p = 2 and n = 3, and p = 2 and n = 7)
have remained as an open question, until now.

In view of the above results, it is more natural to consider a corresponding
result for a product of different spheres, not just for a product of the same spheres,
and the following long-standing conjecture or question, called the rank conjecture,
has been proposed in the literature ([1], Conjecture 2.1, [2], Question 7.2, and [12],
Problem 809).

Conjecture 1.3. Let (Z/p)r act freely on Sn1×Sn2×·· ·×Snl for a prime p. Then
r should be less than or equal to l.

Various partial results to Conjecture 1.3 have been established with various
different techniques by many authors (refer to, e.g., [10], [7], [8], and [9]).

Let lo denote the number of odd dimensional spheres in the product Sn1×Sn2×
·· · × Snl . In view of Theorem 1.1, it is more reasonable to conjecture that r is
less than or equal to lo, when p is odd prime. Our main result of this paper is to
affirmatively prove Conjecture 1.3 in this sharp form, as follows:

Theorem 1.4. Let (Z/p)r act freely on Sn1 × Sn2 × ·· ·× Snl for a prime p. Then
the following statements hold:

(a) If p is odd prime, then r is less than or equal to lo, and the free p-rank of
Sn1×Sn2×·· ·×Snl is equal to lo.

(b) If p is equal to 2, then r is less than or equal to l, and the free p-rank of
Sn1×Sn2×·· ·×Snl is equal to l.

The second statement of Theorem 1.4 (a) (resp. Theorem 1.4 (b)) follows from
the fact that (Z/p)lo (resp. (Z/2)l) can be made to act freely on a product of lo odd
dimensional (resp. l even or odd dimensional) spheres. One of the key ingredients
for the proof of Theorem 1.4 is to use the ideas in the paper [6] employed by
Cao and Lü for the proof of the Halperin-Carlsson conjecture in the category of
moment-angle complexes.
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This paper is organized, as follows. In Section 2, we first review the construc-
tion of a moment-angle complex associated to an abstract simplicial complex on
vertex set, and then introduce the notion of a generalized moment-angle complex
associated to a product of abstract simplicial complexes. In Section 3, we explain
how to calculate the cohomology of moment-angle complexes in terms of Stanley-
Reisner face ring and its Betti numbers. In Section 4, following the paper [6] of Cao
and Lü we introduce the Möbius transforms and give some results which estimate
the support of a Z2-valued Möbius transform. In the same section, we will present
some results which clearly show a very close connection between the notion of a
moment-angle complex and Conjecture 1.3. Note that, in Sections 3 and 4, we pro-
vide more than the material that is necessary simply for the proof of Theorem 1.4.
This is because, we hope, this might be more useful for some future work related
to this topic. Finally, Sections 5 and 6 are devoted to proving our main Theorem
1.4.

2 Moment-angle complexes and their generalizations

The goal of this section is to review the construction of a moment-angle complex
associated to an abstract simplicial complex on vertex set, and then introduce the
notion of a generalized moment-angle complex associated to a product of abstract
simplicial complexes.

To do so, let m be a positive integer and let us denote by [m] the set {1,2, . . . ,m}.
Let K be an abstract simplicial complex on vertex set [m]. For each simplex σ ∈K,
we set

Bσ (D2,S1) =
m

∏
i=1

Ai,

where D2 = {z ∈ C | |z| ≤ 1}, S1 = ∂D2, and

Ai =

{
D2, i ∈ σ ,

S1, i ∈ [m]\σ .

Then the moment-angle complex ZK on K is defined to be a subspace of (D2)m, as
follows:

ZK :=
⋃

σ∈K

Bσ (D2,S1)⊂ (D2)m.

When K = 2[m], it is easy to see that ZK = (D2)m. On the other hand, when K =
2[m]\{[m]} where 2[m] denotes the power set of [m], it can be easily shown that
ZK = S2m−1 (refer to, e.g., [3], Example 2.4).
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Since (D2)m as a subspace of Cm is invariant under the standard action of T m

on Cm given by

((g1,g2, . . . ,gm),(z1,z2, . . . ,zm)) 7→ (g1z1,g2z2, . . . ,gmzm),

(D2)m inherits a natural T m-action whose orbit space is the unit cube Im := [0,1]m⊂
Rm
≥0. This T m-action on (D2)m then induces a canonical T m-action on the moment-

angle complex ZK .
For our purposes of this paper, we next want to generalize the construction

of the moment-angle complex for a single abstract simplicial complex to that for
products of abstract simplicial complexes whose construction is rather straightfor-
ward. For the sake of simplicity, we shall explain how to construct the generalized
moment-angle complex just for two abstract simplicial complexes, since the con-
struction for more general cases is completely analogous.

To do so, let K1 and K2 be two abstract simplicial complexes on vertex sets
[m1] and [m2], respectively. For each σ1×σ2 ∈ K1×K2 where σ1 (resp. σ2) is a
simplex in K1 (resp. K2), we define

Bσ1×σ2(D2,S1) :=

(
m1

∏
i=1

A1
i

)
×

(
m2

∏
i=1

A2
i

)
,

where

A j
i =

{
D2, i ∈ σ j,

S1, i ∈ [m j]\σ j

for each j = 1,2. Then the generalized moment-angle complex ZK1×K2 on K1×K2
is defined to be

ZK1×K2 :=
⋃

σ1×σ2∈K1×K2

Bσ1×σ2(D2,S1).

It follows from its construction that we have

ZK1×K2 = ZK1×ZK2 .

For more abstract simplicial complexes K1,K2, . . . ,Ki on vertex sets [m1], [m2], . . . , [ml],
respectively, it is also easy to see that the following holds:

ZK1×K2×···×Kl = ZK1×ZK2×·· ·×ZKl .

In particular, when Ki = 2[mi]\{[mi]} for each 1≤ i≤ l, we have

ZK1×K2×···×Kl = ZK1×ZK2×·· ·×ZKl

= S2m1−1×S2m2−1×·· ·×S2ml−1.
(2.1)
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Moreover, since there exists a canonical T mi-action on the moment-angle com-
plex ZKi , there exists a canonical T m1+m2+...+ml -action Φ on the generalized moment-
angle complex ZK1×K2×···×Kl .

On the other hand, if we apply the above procedure to obtain the moment-
angle complex ZK to the pair (D1,S0) ⊂ (R,S0) instead of the pair (D2,S1), we
can obtain the real moment-angle complex RZK ⊂ (D1)m on K. Since (D1)m as
a subspace of Rm is invariant under the standard action of (Z2)

m = ({−1,1})m on
Rm given by

((g1,g2, . . . ,gm),(x1,x2, . . . ,xm)) 7→ (g1x1,g2x2, . . . ,gmxm),

(D1)m inherits a natural (Z2)
m-action whose orbit space is again the unit cube Im :=

[0,1]m ⊂ Rm
≥0. This (Z2)

m-action on (D1)m then induces a canonical (Z2)
m-action

on the real moment-angle complex RZK .
Similarly, for l abstract simplicial complexes K1,K2, . . . ,Kl on vertex sets [m1+

1], [m2+1], . . . , [ml+1], respectively, we can construct the generalized real moment-
angle complex RZK1×K2×···×Kl as above, and the following identity holds:

RZK1×K2×···×Kl = RZK1×RZK2×·· ·×RZKl .

As a special case, when Ki = 2[mi+1]\{[mi +1]} for each 1≤ i≤ l, we have

RZK1×K2×···×Kl = RZK1×RZK2×·· ·×RZKl

= Sm1×Sm2×·· ·×Sml .
(2.2)

Moreover, since there exists a canonical (Z2)
mi+1-action on the real moment-angle

complex RZKi , there exists a canonical (Z2)∑
l
i=1(mi+1)-action ΦR on the generalized

real moment-angle complex RZK1×K2×···×Kl .
Finally, we recall the construction of the join of two simplicial complexes. As

above, let K1 and K2 be two abstract simplicial complexes on vertex sets [m1] and
[m2], respectively. Then the join K1 ∗K2 of K1 and K2 is the simplicial complex on
vertex set [m1]∪ [m2], defined as follows.

K1 ∗K2 = {σ ⊂ [m1]∪ [m2] | σ = σ1∪σ2,σ1 ∈ K1,σ2 ∈ K2}.

It then will be important to observe the following lemma which enables us to re-
duce all the considerations about the generalized moment-angle complexes to just
moment-angle complexes (see, e.g., [13], Proposition 7.6).

Lemma 2.1. Let K1, K2, . . ., Kl−1, and Kl be abstract simplicial complexes on
vertex sets [m1], [m2], . . ., [ml−1], and [ml], respectively. Then we have

ZK1∗K2∗···∗Kl = ZK1×ZK2×·· ·×ZKl = ZK1×K2×···×Kl .
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Proof. For the proof, it suffices to prove it only for l = 2, and the proof follows
immediately from the definition of moment-angle complexes. Indeed, we have

ZK1∗K2 =
⋃

σ1∈K1,σ2∈K2

Bσ1∪σ2(D
2,S1) =

⋃
σ1∈K1,σ2∈K2

Bσ1(D
2,S1)×Bσ2(D

2,S1)

=

( ⋃
σ1∈K1

Bσ1(D
2,S1)

)
×

( ⋃
σ2∈K2

Bσ2(D
2,S1)

)
= ZK1×ZK2 ,

as desired.

3 Cohomology of moment-angle complexes

In this section, we briefly explain the way to calculate the cohomology of moment-
angle complexes in terms of Stanley-Reisner face ring and its Betti numbers. The
material of this section is largely taken from the paper [6], Section 2, so that a
reader may refer to the paper for more details.

Let k denote a field of arbitrary characteristic, and k[v] = k[v1,v2, . . . ,vm] be the
polynomial algebra over k in m indeterminates v1,v2, . . . ,vm with degree of vi equal
to 2. For an abstract simplicial complex K on vertex set [m], the Stanley-Reisner
ideal of K is defined as

IK := 〈vτ |τ /∈ K for τ ∈ 2[m]〉,

where vτ = ∏i∈τ vi. The quotient ring

k(K) = k[v]/IK

is called the Stanley-Reisner face ring of K. For instance, if K = 2[m], then k(K) =
k[v], and if K = 2[m]\{[m]}, then k(K) = k[v]/〈v[m]〉.

Buchstaber and Panov showed how to compute the cohomology of the moment-
angle complex Z in terms of the Stanlet-Reisner face ring of K. To be precise, they
proved the following theorem in [5], Theorem 7.6:

Theorem 3.1. As k-algebras,

H∗(ZK ;k)∼= Tork[v](k(K),k).

As an immediate consequence, we have the following

Corollary 3.2. As k-algebras,

H∗(ZK1×K2×···×Kl ;k)∼=⊗l
i=1Tork[v(i)](k(Ki),k).
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Moreover, it is known that the total Betti number of the moment-angle complex
ZK is given by

∑
i

dimk H i(ZK ;k) =
h

∑
i=0

dimk Tork[v(i)]
i (k(K),k)

=
h

∑
i=0

∑
a∈2[m]

β
k(K)
i,a ,

(3.1)

where h is the length of the minimal free resolution of k(K) and β
k(K)
i,a denotes the

(i,a)-th Betti number of k(K) (refer to [6], Subsection 2.3 for more details). Hence
it is straightforward from (2.1) and (3.1) to obtain the following corollary.

Corollary 3.3. The following identity holds:

∑
i

dimk H i(ZK1×K2×···×Kl ;k) =
l

∏
i=1

(
hi

∑
ji=0

∑
ai∈2[mi ]

β
k(Ki)
ji,ai

)
.

Finally, we remark that, according to [6], Theorem 4.2, our Theorem 3.1, and
Corollaries 3.2 and 3.3 hold to be true even for the generalized real moment-angle
complexes RZK1×K2×···×Kl as graded k-modules.

4 Möbius transforms and their supports

The goal of of this section is to give the lower and upper bounds for the support
of a Möbius transform of a certain Z2-valued function on a product of the power
sets of [m]’s. This mildly generalizes the results in [6], Section 3 under our new
settings.

From now on, we set

2[m]∗ := { f | f : 2[m]→ Z2 = {0,1}}.

Then 2[m]∗ forms an algebra over Z2 under the pointwise addition and multiplica-
tion. Given a function f ∈ 2[m]∗, the support of f is defined to be the set

supp( f ) := f−1({1}),

and f is said to be nice if the support supp( f ) of f forms an abstract simplicial
complex on the vertex set ∪a∈supp( f )a⊂ [m]. Then it follows from the definition of
an abstract simplicial complex that f is nice if and only if for each a∈ supp( f ) any
subset b of a satisfies f (b) = 1.
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Similarly, for positive integers m1,m2, . . . ,ml we set

W ∗[m1],[m2],...,[ml ]

:= { f =
l⊗

i=1

fi ∈ 2[m1]
∗⊗2[m2]

∗⊗·· ·⊗2[ml ]
∗ | fi : 2[mi]→ Z2, i.e., fi ∈ 2[m1]

∗}.

Note that
2[m1]

∗⊗2[m2]
∗⊗·· ·⊗2[ml ]

∗

is generated by W ∗m1,m2,...,ml
, i.e.,

2[m1]
∗⊗2[m2]

∗⊗·· ·⊗2[ml ]
∗
= 〈W ∗m1,m2,...,ml

〉.

Then 2[m1]
∗⊗2[m2]

∗⊗·· ·⊗2[ml ]
∗

clearly forms an algebra over Z2 under the point-
wise addition and multiplication defined by(

l⊗
i=1

fi +
l⊗

i=1

gi

)
(a1,a2, . . . ,al) =

l⊗
i=1

fi(a1,a2, . . . ,al)+
l⊗

i=1

gi(a1,a2, . . . ,al).(
l⊗

i=1

fi ·
l⊗

i=1

gi

)
(a1,a2, . . . ,al) =

l⊗
i=1

fi(a1,a2, . . . ,al) ·
l⊗

i=1

gi(a1,a2, . . . ,al).

However, W ∗[m1],[m2],...,[ml ]
does not necessarily form an algebra over Z2.

The support of f =
⊗l

i=1 fi ∈W ∗[m1],[m2],...,[ml ]
is given by

supp( f ) = f−1
1 ({1})× f−1

2 ({1})×·· ·× f−1
l ({1})

= {a1×a2×·· ·×al ∈ 2[m1]×2[m2]×·· ·×2[ml ] | fi(ai) = 1, i = 1,2, . . . , l}.

As in the case of 2[m]∗, for each a1× a2× ·· · × al ∈ 2[m1]× 2[m2]× ·· · × 2[ml ] we
define δa1,a2,...,al ∈W ∗[m1],[m2],...,[ml ]

by

δa1,a2,...,al (b1,b2, . . . ,bl) =

{
1, bi = ai for all i,
0, otherwise.

That is, it is easy to see

δa1,a2,...,al (b1,b2, . . . ,bl) =
l⊗

i=1

δai(b1,b2, . . . ,bl) =
l

∏
i=1

δai(bi),

where

δai(bi) =

{
1, bi = ai

0, otherwise.
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Since {δai |ai ∈ 2[mi]} forms a basis for 2[mi]
∗

for each i, the set

B := {δa1,a2,...,al |a1×a2×·· ·×al ∈ 2[m1]×2[m2]×·· ·×2[ml ]}

also forms a basis for 2[m1]
∗⊗2[m2]

∗⊗·· ·⊗2[ml ]
∗
, so that every element of

W ∗[m1],[m2],...,[ml ]

can be written uniquely as a linear combination of the set B.
Next we are ready to give a definition of the Z2-valued Möbius transform on

W ∗[m1],[m2],...,[ml ]
which is a straightforward generalization of the Z2-valued Möbius

transform M on 2[m]∗ given in [6], Section 2.
The map M : W ∗[m1],[m2],...,[ml ]

→W ∗[m1],[m2],...,[ml ]
given by

M ( f )(a1,a2, . . . ,al) = ∑
bi⊂ai

f (b1,b2, . . . ,bl)

for all f ∈W ∗[m1],[m2],...,[ml ]
and a1× a2×·· ·× al ∈ 2[m1]× 2[m2]×·· ·× 2[ml ] will be

called the Z2-valued Möbius transform on W ∗[m1],[m2],...,[ml ]
. In fact, it follows from

the definition of W ∗[m1],[m2],...,[ml ]
that for f =

⊗l
i=1 fi ∈W ∗[m1],[m2],...,[ml ]

, we have

M ( f )(a1,a2, . . . ,al) = ∑
bi⊂ai

f (b1,b2, . . . ,bl) = ∑
bi⊂ai

f1(b1) · f2(b2) · · · fl(bl)

=

(
∑

b1⊂a1

f1(b1)

)
· · ·

(
∑

bl⊂al

f1(bl)

)
= M ( f1)(a1) ·M ( f2)(a2) · · ·M ( fl)(al), i.e.,

(4.1) M ( f ) =
l⊗

i=1

M ( fi).

Let 1 be the constant function on 2[m], and xi be the i-th coordinate function
given by the condition that, for every a ∈ 2[m], xi(a) = 1 if and only if i ∈ a. Recall
then from [6], Section 2 that for each a ∈ 2[m], µa is given by

µa =

{
∏i∈a xi, a 6= /0,
1, a = /0.

Since M 2 is the identity on 2[m]∗ and M (δai) = µai , it is also easy to check out
from (4.1) that M 2 is the identity on W ∗[m1],[m2],...,[ml ]

and

M (δa1,a2,...,al ) =
l⊗

i=1

µai =: µa1,a2,...,al .
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Since the Möbius transform M is the involution, obviously it is true that

M (µa1,a2,...,al ) = δa1,a2,...,al .

With these preliminaries on the Möbius transforms in place, we are now ready
to give our main results of this section. To do so, we start with the following simple
lemma.

Lemma 4.1. For f =
⊗l

i=1 fi ∈W ∗[m1],[m2],...,[ml ]
, assume that each fi ∈ 2[mi]

∗
is a

nice function such that K fi := supp( fi) is an abstract simplicial complex on vertex
set [mi]. Then we have

(4.2) M ( f ) =
l⊗

i=1

(
h j

∑
ji=0

∑
ai∈2[mi ]

β
k(K fi )

ji,ai
δai

)
.

Proof. Since we have

M ( f ) =
l⊗

i=1

M ( fi) (see (4.1)),

and

M ( fi) =
h j

∑
ji=0

∑
ai∈2[mi ]

β
k(K fi )

ji,ai
δai (see [6], Theorem 3.1),

it is immediate to obtain the equality (4.2), as desired.

As a consequence of Lemma 4.1, we can show the following

Theorem 4.2. For f =
⊗l

i=1 fi ∈W ∗[m1],[m2],...,[ml ]
, assume that f is a nice function

in that each fi ∈ 2[mi]
∗

is a nice function so that K fi := supp( fi) is an abstract
simplicial complex on vertex set [mi]. Then the support supp(M ( f )) of f satisfies

(4.3) |supp(M ( f ))| ≤
l

∏
i=1

(
h j

∑
ji=0

∑
ai∈2[mi]

β
k(K fi )

ji,ai

)
= ∑

i
dimk H i(ZK1×K2×···×Kl ;k).

Proof. Note first that it follows from (4.2) that

M ( f ) =
l⊗

i=1

(
h j

∑
ji=0

∑
ai∈2[mi ]

β
k(K fi )

ji,ai
δai

)

= ∑
a1∈2[m1 ],a2∈2[m2 ],...,al∈2[ml ]

l

∏
i=1

(
h j

∑
ji=0

β
k(K fi )

ji,ai

)
δa1,a2,...,al .

(4.4)
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This implies that, for a1×a2×·· ·×al ∈ supp(M ( f )), the coefficient ∏
l
i=1

(
∑

h j
ji=0 β

k(K fi )

ji,ai

)
in the equation (4.4) should be a non-negative and odd integer greater than or equal
to 1. Thus, we have

|supp(M ( f ))|= ∑
a1×a2×···×al∈supp(M ( f ))

1

≤ ∑
a1×a2×···×al∈supp(M ( f ))

(
l

∏
i=1

(
h j

∑
ji=0

β
k(K fi )

ji,ai

))

≤ ∑
a1∈2[m1],a2∈2[m2],...,al∈2[ml ]

(
l

∏
i=1

(
h j

∑
ji=0

β
k(K fi )

ji,ai

))

=
l

∏
i=1

(
h j

∑
ji=0

∑
ai∈2[mi ]

β
k(K fi )

ji,ai

)
,

as required.

Let F[m1],[m2],...,[ml ] be the collection of all f ∈W ∗[m1],[m2],...,[ml ]
such that each fi ∈

2[mi]
∗

is nice, i.e., fi ∈F[mi]. Note that all functions of F[mi] correspond bijectively
to all abstract simplicial complexes on vertex set ⊂ [mi] in terms of the supports
([6], Proposition 2.1). Thus, for any function f =

⊗l
i=1 fi ∈W ∗[m1],[m2],...,[ml ]

the
supports supp( fi) of fi ∈F[mi] are abstract simplicial complexes on vertex set ⊂
[mi]. Moreover, we have the following

Theorem 4.3. For any f =
⊗l

i=1 fi ∈F[m1],[m2],...,[ml ], there exists some a1× a2×
·· ·×al ∈ supp( f ) such that

|supp(M ( f ))| ≥ 2∑
l
i=1 mi−∑

l
i=1 |ai|.

Proof. It follows from the definition of f ∈F[m1],[m2],...,[ml ] and [6], Theorem 3.5
that there exists some ai ∈ supp( fi) such that

|supp(M ( fi))| ≥ 2mi−|ai|.

Since each ai lies in the supp( fi) of fi, clearly a1×a2×·· ·×al lies in the support
supp( f ) of f . Hence we have

|supp(M ( f ))|=
l

∏
i=1
|supp(M ( fi))|

≥ 2∑
l
i=1 mi−∑

l
i=1 |ai|,

as required.
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5 Proof of Theorem 1.4 (b)

The goal of this section is to give a proof of Theorem 1.4 (b). Note that every
action throughout this paper is assumed to be effective, as always.

The following theorem can be regarded as one of our main results of this sec-
tion.

Theorem 5.1. Let H be a torus T r := (S1)r of rank r, and let H act freely on
ZK1×K2×···×Kl in such a way that the action is not necessarily given by the restric-
tion of the action Φ. Then we have

2r ≤∑
i

dimk H i(ZK1×K2×···×Kl ;k).

In particular, if Ki = 2[mi]\{[mi]} for each i, then we have

ZK1×K2×···×Kl = S2m1−1×S2m2−1×·· ·×S2ml−1,

and so r is less than or equal to l.

Remark 5.2. It is straightforward to check that the conclusion of Theorem 5.1 also
holds for a torus H = (Z/p)r of rank r without much modification, where p is
prime.

In order to prove Theorem 5.1, we will need the following lemma which is
analogous to [6], Lemma 5.1. But one crucial difference is that we dot not require
the action to be given by the restriction of Φ.

Lemma 5.3. Let L be an abstract simplicial complex on vertex set [m], and let H
be a torus T r of rank r such that H acts freely on ZL. Then r satisfies

r ≤ m−dimk L−1.

Proof. To prove it, we first take an element a ∈ L such that

|a|= dimk L+1.

Note that we may assume without loss of generality that each a is of the form
{1,2, . . . , |a|}. Thus ZL should contain an element z of the form

z = (0, . . . ,0,z|a|+1, . . . ,zm) ∈ Ba(D2,S1).

By using the linear representation of T r at the point z, we may also assume that the
action of t = (t1, t2, . . . , tr) ∈ T r to z is given by

t · z = (0, . . . ,0, t
n(|a|+1)1
1 t

n(|a|+1)2
2 · · · tn(|a|+1)r

r z|a|+1, . . . ,

. . . , tn j1
1 tn j2

2 · · · t
n jr
r z j, . . . , t

nm1
1 tnm2

2 · · · tnmr
r zm),

(5.1)

12



where n jk, called the weight, denotes an integer for |a|+1≤ j ≤ m and 1≤ k ≤ r.
Since each z j is non-zero, it follows from (5.1) that we can obtain a system of
m−|a| equations with r unknowns θ1, . . .θr−1, and θr, as follows.

(5.2) n j1θ1 +n j2θ2 + · · ·+n jrθr = 0, |a|+1≤ j ≤ m,

where θi denotes a real number in [0,1) for 1≤ i≤ r.
On the other hand, since the action of T r on ZL is assumed to be free, by (5.2)

we should have only one solution

(θ1, . . . ,θr) = (0, . . . ,0).

It is easy to see that it is possible only when the rank of the (m− |a|)× r-matrix
(n jk) is r. This implies that m−|a| should be greater than or equal to r. That is, we
have

r ≤ m−|a|= m−dimk L−1.

This completes the proof of Lemma 5.3.

Next we are ready to give a proof of Theorem 5.1.

Proof of Theorem 5.1. For the proof of the first statement, let us denote by L (resp.
[m]) the join K1 ∗K2 ∗ · · · ∗Kl of K1, K2, . . ., Kl−1, and Kl (resp. the disjoint union
[m1]∪ . . .∪ [ml] of l vertex sets [m1], [m2], . . ., [ml]). Then we can choose an element
f ∈F[m] such that supp( f ) = L, by [6], Proposition 2.1. Since the action of H on
ZL is free, f cannot be the constant function 1. Thus we may assume that by [6],
Theorem 3.5 there exists a ∈ 2[m] with a 6= [m] such that a ∈ supp( f ) = L and

(5.3) |supp(M ( f ))| ≥ 2m−|a|.

Since a ∈ L, clearly |a| ≤ dimk L+1, and so by Lemma 5.3 we have

dimk L≤ m− r−1.

As a consequence, we can obtain

|a| ≤ m− r, i.e., r ≤ m−|a|.

Hence, it follows from (5.3), Corollary 3.3, Theorem 4.2, and Theorem 4.3 that

2r ≤ 2m−|a|

≤ |supp(M ( f ))| ≤∑
i

dimk H i(ZL;k)

= ∑
i

dimk H i(ZK1×K2×···×Kl ;k),

13



as asserted.
For the proof of the second statement, notice first that, by the choice of Ki =

2[mi]\{[mi]} and the identity (2.1), we have

ZK1×K2×···×Kl = S2m1−1×S2m2−1×·· ·×S2ml−1.

On the other hand, it follows from Lemma 2.1 that

ZL = ZK1∗K2∗···∗Kl = ZK1×K2×···×Kl .

Hence it follows from the first statement of the theorem and the Künneth formula
that

2r ≤∑
i

dimk H i(ZK1×K2×···×Kl ;k) =
l

∑
k=0

lCk = 2l.

Thus r is less than or equal to l, as asserted.

It is easy to see that we can apply the preceding arguments to the generalized
real moment-angle complex RZK1×K2×···×Kl without any serious modification. So
we have the following theorem which is completely analogous to Theorem 5.1 and
so whose proof will be left to the reader.

Theorem 5.4. Let H be a torus (Z/2)r of rank r, and let H act freely on RZK1×K2×···×Kl

in such a way that the action is is not necessarily given by the restriction of the ac-
tion ΦR. Then we have

2r ≤∑
i

dimk H i(RZK1×K2×···×Kl ;k).

In particular, if Ki = 2[mi+1]\{[mi +1]} for each i, then we have

RZK1×K2×···×Kl = Sm1×Sm2×·· ·×Sml ,

and so r is less than or equal to l.

We now close this section with a few remarks. Let p be an odd prime, and, for
example, let (Z/p)r act freely on

S2m1−1×S2m2−1×·· ·×S2ml−1.

by the restriction of the action map Φ. Then it can be easily shown that r is less
than or equal to l, and the free p-rank of S2m1−1× S2m2−1× ·· ·× S2ml−1 is equal
to l. Indeed, by applying the Smith theory (see, e.g., [11], Theorem 5.35) we
may assume that (Z/p)r always acts on any sphere Sni with an isotropy subgroup
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Hi with index p. Hence, since (Z/p)r acts freely on the product Sn1 × ·· · × Snl ,
∩l

i=1Hi should be trivial. This implies that r is less than or equal to l, since each Hi

is a hyperplane in (Z/p)r.
However, note that there exists a free (Z/p)r-action on ZK that cannot be ex-

tended to the natural torus action. Indeed, in his paper [4] Browder constructed
free actions of (Z/p)r-actions on (Sm)k for each odd m≥ 3 and r≥ 3, k≥ 4, k≥ r,
p > km/2, called homologically exotic, such that they cannot be extended to T r-
actions.

6 Proof of Theorem 1.4 (a)

The goal of this section is to give a proof of Theorem 1.4 (a). To do so, we begin
with the following theorem.

Theorem 6.1. Let (Z/p)r act freely on S2m1−1×S2m2−1×·· ·×S2ml−1 for a prime
p. Then r is less than or equal to l.

Proof. Note first that, if Ki = 2[mi]\{[mi]} for each 1≤ i≤ l, then we have

S2m1−1×S2m2−1×·· ·×S2ml−1 = ZK1×K2×···×Kl .

Thus (Z/p)r act freely on the generalized moment-angle complex ZK1×K2×···×Kl .
It follows from Remark 5.2 that the r is less than or equal to l, as desired. Note that
this proves Theorem 1.4 (a) in case of l = lo.

In order to deal with even dimensional spheres in the products of spheres, we
will need the following lemma.

Lemma 6.2. Let p be odd prime, and let G := (Z/p)r act freely on S2m1−1×S2m2

by the action map Ψ. Then the (Z/p)r-action Ψ is split in that

Ψ(g,(t,s)) = (χs(g, t),s), g ∈ (Z/p)r, (t,s) ∈ S2m1−1×S2m2 ,

where χs induces a free (Z/p)r-action on S2m1−1 for each s ∈ S2m2 .

Proof. Note first that there is a commutative diagram for some continuous map
χs : G×S2m1−1→ S2m1−1, depending on the parameter s ∈ S2m2 :

G×
(
S2m1−1×S2m2

)
Ψ //

id×p1
��

S2m1−1×S2m2

p1

��
G×S2m1−1 χs // S2m1−1,
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where p1 : S2m1−1× S2m2 → S2m1−1 denotes the projection onto the first factor. In
fact, we have

χs(g, t) = p1(Ψ(g,(t,s))).

For the sake of simplicity, let us write Ψ(g,(t,s)) as g · (t,s). Let p2 : S2m1−1×
S2m2 → S2m2 denote the projection onto the second factor. Then we have

(g2g1) · (t,s) = g2 · (g1 · (t,s)) = g2 · (p1(g1 · (t,s)), p2(g1 · (t,s)))
= (p1 (g2 · (p1(g1 · (t,s)), p2(g1 · (t,s)))) , p2 (g2 · (p1(g1 · (t,s)), p2(g1 · (t,s))))).

Thus we obtain

(6.1) p2(g2g1 · (t,s)) = p2 (g2 · (p1(g1 · (t,s)), p2(g1 · (t,s)))) .

Using the second factor of Ψ(g,(t,s)), we next define a continuous map

ρ : G×S2m2 → S2m2 , (g,s) 7→ p2(Ψ(g,(t,s))),

for some t ∈ S2m1−1 satisfying the additional condition that if ρ(g1,s) = p2(g1 ·
(t,s)) for g1 ∈ G and some t ∈ S2m1−1, then for any other g2 ∈ G

ρ(g2g1,s) = p2(g2g1 · (t,s)),
ρ(g2, p2(g1 · (t,s))) = p2 (g2 · (p1(g1 · (t,s)), p2(g1 · (t,s)))) .

(6.2)

The meaning of the extra condition in (6.2) goes as follows: once we start to use
t ∈ S2m1−1 in order to define ρ(g,s) in terms of Ψ(g,(t,s)), we use the same t to
define ρ(g′,s) for all g′ ∈ G. On the other hand, we will use p1(g · (t,s)) ∈ S2m1−1

in order to define ρ(g′, p2(g · (t,s))) for all g′ ∈ G and p2(g · (t,s)) ∈ S2m2 .
Then we can show that ρ actually defines a group action on S2m2 . Indeed,

obviously ρ(e,s) = s for all s∈ S2m2 . Moreover, it follows from (6.1) and (6.2) that
we have

ρ(g2g1,s) = p2(g2g1 · (t,s))
= p2 (g2 · (p1(g1 · (t,s)), p2(g1 · (t,s)))) ,
= ρ(g2, p2(g1 · (t,s))),
= ρ(g2,ρ(g1,s)),

as required.
However, by Theorem 1.1 there is no non-trivial group action of G on S2m2 for

any odd prime p. This implies that

s = ρ(g,s) = p2(Ψ(g,(t,s))
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for all s ∈ S2m2 and some t ∈ S2m1−1. But notice that we can start and repeat
our arguments with any t for a given (g,s) ∈ G× S2m2 , so we can conclude that
p2(Ψ(g,(t,s)) = s for any g ∈ G and any (t,s) ∈ S2m1−1×S2m2 . Hence we have

Ψ(g,(t,s)) = (χs(g, t),s), g ∈ (Z/p)r, (t,s) ∈ S2m1−1×S2m2 .

This also says that χs : G× S2m1−1→ S2m1−1 actually defines a free group action.
This completes the proof of Lemma 6.2.

More generally, it is easy to see that the following lemma also holds, whose
proof is completely analogous to that of Lemma 6.2 and so will be left to the
reader:

Lemma 6.3. Let p be odd prime, and let G := (Z/p)r act freely on

S2m1−1×S2m2−1×·· ·×S2mlo−1×S2mlo+1×·· ·×S2ml

by the action map Ψ. Then the (Z/p)r-action Ψ is split in that

Ψ(g,(t1, . . . tlo ,s1, . . . ,sl−lo)) = (χs1,...,sl−lo
(g,(t1, . . . , tlo)),s1, . . . ,sl−lo),

where χs1,...,sl−lo
induces a free (Z/p)r-action on S2m1−1×S2m2−1×·· ·×S2ml0−1.

We can now finish the proof of Theorem 1.4 (a), as follows.

Theorem 6.4. Let p be odd prime, and let G := (Z/p)r act freely on

S2m1−1×S2m2−1×·· ·×S2mlo−1×S2mlo+1×·· ·×S2ml

by the action map Ψ. Then r is less than or equal to lo.

Proof. By Lemma 6.2, the free G-action Ψ induces a free G-action χ on S2m1−1×
S2m2−1×·· ·×S2mlo−1. Then the theorem follows immediately from Theorem 6.1.
This proves Theorem 1.4 (a) in case of lo ≤ l.

Finally, note that Theorems 5.4 and 6.4 complete the proof of Theorem 1.4.
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[15] E. Yalçin, Group actions and group extensions, Trans. Amer. Math. Soc. 352
(2000), 2689–2700.

Department of Mathematics Education, Chosun University, 309 Pilmun-daero,
Dong-gu, Gwangju 501-759, Republic of Korea (South Korea)

E-mail address: jinhkim11@gmail.com

18


	Introduction and Main Results
	Moment-angle complexes and their generalizations
	Cohomology of moment-angle complexes
	Möbius transforms and their supports
	Proof of Theorem 1.4 (b)
	Proof of Theorem 1.4 (a)

