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Abstract. We show that the Leopoldt conjecture implies the so-called Hilbert’s
theorem 90 for compact modules made from the p-units over the cyclotomic
Zp-extension kcyc∞ of k. And under the generalized Gross conjecture, we show
that Hilbert’s theorem 90 for the compact modules above is equivalent to the

affirmation of the Leopoldt conjecture.

1. Introduction

Let k be a number field and let p be a prime number. The purpose of this paper
is to show that two basic conjectures of Gross and Leopoldt are related through
arithmetic properties of certain compact modules made from the p-units which is
the so-called Hilbert’s theorem 90 over the cyclotomic Zp-extension k

cyc
∞ of k.

More precisely we prove that under the generalized Gross conjecture, the Leopoldt
conjecture is equivalent to the so-called Hilbert’s theorem 90 for a closure of the
p-units over kcyc∞ /k. The arithmetic property which is called the universal norm
property of the topological closure of the p-units over kcyc∞ /k will play a role in
connecting two conjectures via class field theory.

We will explain very briefly the general strategy to relate the two conjectures.
The Leopoldt conjecture concerns on the ranks of two modules Un(p) and ∆(Un(p))
made from the p-units Un(p) of kn where kn is the unique subfield of kcyc∞ of de-
gree pn over k. Through the weak Leopoldt conjecture and Hilbert’s theorem 90
over kcyc∞ /k, the Leopoldt conjecture reduces to the ranks of the universal norms

Un(p)univ and ∆(Un(p))
univ

. These universal norm groups finally can be related to
the Tate module Tp(k) which is related to the generalized Gross conjecture through
infinite class field theory.

In order to state the main theorem, we recall some definitions briefly. For the
cyclotomic Zp-extension k

cyc
∞ , write kcyc∞ =

∪
n≥0 kn with kn the unique subfield of

kcyc∞ of degree pn over k. Let Γ denote the procyclic group G(kcyc∞ /k) generated by
γ and for each n ≥ 0, let Γn = G(kcyc∞ /kn) be the unique subgroup of Γ with index
pn. We define the Tate module Tp(k) of k to be

Tp(k) = lim←−
n

G(Kn/kn)

the inverse limit of G(Kn/kn) where Kn is the maximal abelian unramified p-
extension of kn such that all primes dividing p split completely. One of the equiva-
lent forms of the generalized Gross conjecture can be described via class field theory
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as the finiteness of the Galois coinvariant

Tp(k)Γ := Tp(k)/(γ − 1)Tp(k)

of the Tate module Tp(k) over k
cyc
∞ /k (cf. Theorem 1.14 of [17]). For a finite set A,

let ♯(A) denote the cardinality of A.

The generalized Gross conjecture for (k, p): Let k be a number field. Then

♯ (Tp(k)Γ) <∞.

We will state some equivalent forms of the Leopoldt conjecture. Let δ denote
the diagonal embedding

δ : k× −→
∏
v|p

k×v , α 7→ (α, · · · , α).

Let Uk(p) be the p-units of k and let δ(Uk(p)) be the topological p-adic closure
of δ(Uk(p)) in

∏
v|p k

×
v . For each prime v of k dividing p, let U1

v = 1 + pv denote

the principal units at v.
If we denote by r1 and r2 respectively the number of real and complex places

of k, then the Leopoldt conjecture is equivalent to the Zp-rank rankZp(δ(Uk(p)) ∩∏
v|p U

1
v ) of the p-part of δ(Uk(p)) is r1 + r2 − 1 (see Conjecture 7.9 of page 102

of [21])

rankZp(δ(Uk(p)) ∩
∏
v|p

U1
v ) = r1 + r2 − 1.

For a Z-module M , let

M̂ = lim←−
n

M/Mpn

denote the p-adic closure of M . Let ∆ be the induced map

∆ : k× −→
∏
v|p

k̂×v , α 7→ (α, · · · , α).

Then the topological closure ∆(Uk(p)) of the image ∆(Uk(p)) of Uk(p) under ∆ in

the group
∏

v|p k̂
×
v is equal to the image of the induced map

∆̂ : Uk(p) −→
∏
v|p

k̂×v

where Uk(p) := Uk(p)⊗Z Zp.

The Leopoldt conjecture for (k, p): Let k be a number field. Then ∆̂ induces
the following isomorphism

Uk(p) ∼= ∆(Uk(p)).

Equivalently, the Leopoldt conjecture can be stated in terms of the Zp-rank of

∆(Uk(p))

rankZp(∆(Uk(p))) = r1 + r2 + r − 1

where r = rk(p) denotes the number of primes of k dividing p (cf. Theorem 10.3.6

and Remark of page 634 of [22]). Note that the p-adic closure of δ(Uk(p)) in
∏

v|p k̂
×
v

is equal to ∆(Uk(p)).
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We will define Hilbert’s theorem 90 for compact modules over a Zp-extension
k∞ of k.

Over a Zp-extension k∞ =
∪

n≥0 kn of k, let Nm,n = Nkm/kn
denote the norm

map from km to kn and let Nm = Nm,0 denote the norm map from km to the
ground field k0 = k.

For any multiplicative subgroup Mn of the intermediate field k×n , we define the
norm compatible subgroups M comp

n and the universal norm subgroups Muniv
n as

follows

M comp
n = π( lim←−

m≥n

Mm), Muniv
n =

∩
m≥n

Nkm/kn
Mm

where the inverse limits are taken with respect to the norm maps and π = πn
denotes the natural projection from lim←−m≥n

Mm toMn defined as π((bm)m≥n) = bn.

We will define similar notions by tensoring with Zp.
Let An be a compact Zp[G(kn/k)]-module with the norm maps for all m ≥ n,

Nm,n : Am −→ An.

If we define A∞ := lim←−n≥0
An to be the inverse limits of {An}n≥0 with respect to

the norm maps Nm,n, then A∞ is a Λ := lim←−n≥0
Zp[G(kn/k)]-module. Let

(A∞)Γ = A∞/(γ − 1)A∞.

Definition 1.1. Let k∞ =
∪

n≥0 kn be a Zp-extension of k.

(i) We will say that Ak satisfy Hilbert’s theorem 90 over k∞/k,

(A∞)Γ ∼= Auniv
k .

(ii) We will say the generalized Gross conjecture holds for (k∞, p) if the generalized
Gross conjecture holds for (kn, p) for all n ≥ 0.
(iii) We will say the Leopoldt conjecture holds for (k∞, p) if the Leopoldt conjecture
holds for (kn, p) for all n ≥ 0.

For a Galois extension k′/k and their global p-units Uk′(p) and Uk(p) of k
′ and k

respectively, we have the induced norm map Nk′/k : Up(k
′)⊗Z Zp −→ Uk(p)⊗Z Zp

such that Nk′/k acts trivially on Zp, i.e., for a ∈ k′ and α ∈ Zp,

Nk′/k(a⊗ α) = Nk′/k(a)⊗ α.
For the global p-units Un(p) = Ukn(p) of kn, write

Un(p) := Un(p)⊗Z Zp, U∞ := lim←−
n≥0

(Un(p)⊗Z Zp)

with U0(p) = Uk(p), U0(p) = Uk(p). The group Uk(p)univ of universal norm ele-
ments is defined as

Uk(p)univ =
∩
n≥0

NnUn(p) =
∩
n≥0

Nn(Un(p)⊗Z Zp) =
∩
n≥0

(Nn(Un(p))⊗Z Zp).

The projection π induces the following natural map

π : (U∞)Γ → Uk(p)
such that the image of π is equal to the norm comparable elements Uk(p)comp of
Uk(p) where (U∞)Γ is the coinvariant of U∞ by Γ = G(k∞/k). Then by an argument
of compactness, it follows that Uk(p)comp = Uk(p)univ. We state the main theorem
of this paper.
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Theorem 1.2. (i) The Leopoldt conjecture for (k, p) implies Hilbert’s theorem 90

for ∆(Uk(p)) over k
cyc
∞ /k.

(ii) Under the generalized Gross conjecture for (kcyc∞ , p), Hilbert’s theorem 90 for

∆(Un(p)) over k
cyc
∞ /kn for all n ≥ 0 is equivalent to the affirmation of the Leopoldt

conjecture for (kcyc∞ , p).

When k is totally real or a CM-field, we have the following corollary.

Corollary 1.3. (i) If k is a totally real field then the affirmation of the Leopoldt
conjecture for (kcyc∞ , p) is equivalent to the affirmation of the Gross conjecture for

(kcyc∞ , p) and Hilbert’s theorem 90 for ∆(Un(p)) over k
cyc
∞ /kn for all n ≥ 0.

(ii) If k is a CM-field with a maximal real subfield k+ then the affirmation of
the Leopoldt conjecture for (kcyc∞ , p) is equivalent to the affirmation of the Gross

conjecture for (k+cyc
∞ , p) and Hilbert’s theorem 90 for ∆(Uk+

n
(p)) over k+cyc

∞ /k+n for
all n ≥ 0.

As special cases of Corollary 1.3, if the number r∞(p) (resp. r∞+(p)) of primes of
kcyc∞ (resp. k+cyc

∞ ) dividing p is one, then we have more simple descriptions.
(i) If k is a totally real field with r∞(p) = 1, then the affirmation of the Leopoldt

conjecture for (kcyc∞ , p) is equivalent to Hilbert’s theorem 90 for ∆(Un(p)) over
kcyc∞ /kn for all n ≥ 0.
(ii) If k is a CM-field with the maximal real subfield k+ such that r∞+(p) = 1, then
the affirmation of the Leopoldt conjecture for (kcyc∞ , p) is equivalent to Hilbert’s

theorem 90 for ∆(Uk+
n
(p)) over k+cyc

∞ /k+n for all n ≥ 0.
In §2, we recall the generalized Gross conjecture and the Leopoldt conjecture.

In §3, we prove Theorem 1.2 and Corollary 1.3.

2. Conjectures of Gross and Leopoldt

Leopoldt made his conjecture for the units of a totally real field, and Gross made
his conjecture for the minus part of the p-units of a CM field. Two conjectures were
generalized independently to a number field k. Let k∞ =

∪
n≥0 kn be a Zp-extension

of k with kn the unique subfield of k∞ of degree pn over k and Gn = G(kn/k).
Following Iwasawa (see §4 of [13]), we briefly explain how the two conjectures are

connected using the cohomologies over Γ = G(k∞/k). From the seven term exact
sequence of Auslander-Brumer and Chase-Harrison-Rosenberg, one can define

ψS : H2(Γ, U∞(S)) −→ BS := ker(H2(Γ, k×∞)→ H2(Γ, I∞))

where U∞(S) and I∞ are the group of the S := {v|p}-units and the group of frac-
tional ideals of k∞ respectively (see Proposition 2.1 of [5] or Proposition 1 of [13]).
Then there are three equivalent conditions;
i) ψS is surjective,
ii) Cl∞(S)Γ <∞,
iii) H1(Γ, Cl∞(S)) = 0,
where Cl∞(S) is the p-part of the S-ideal class group of k∞

If k∞ is equal to the cyclotomic Zp-extension kcyc∞ , then the generalized Gross
conjecture for (k, p) is equivalent to one of the three conditions (i), (ii) and (iii)
above. When k is a totally real field, the Leopoldt conjecture, i.e., the uniqueness
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of a Zp-extension of k, implies ψS is surjective. When k is a CM field and p is odd,
there exists a decomposition of ±1-eigenspaces via the complex conjugation,

ψ±
S : H2(Γ, U∞(S))± −→ B±

S .

The Leopoldt conjecture implies the surjectivity of the plus part ψ+
S as above and

the surjectivity of the minus part ψ−
S is the Gross conjecture. Hence when k is

a CM field, the conjectures of Leopoldt and Gross implies the generalized Gross
conjecture.

2.1. We introduce briefly the generalized Gross conjecture with its reformulation
in terms of the Tate module. For an arbitrary number field k, let S denote the set
of the primes of k dividing p. We denote by Uk(p) the group of S-units of k.

For each finite prime v of k, let kunivv denote the group of universal norms from
the cyclotomic Zp-extension k

cyc
v,∞ of the local field kv. Let logp denote Iwasawa’s

p-adic logarithm normalized by logp(p) = 0. Thus it induces an isomorphism from

Q×
p /p

Zµ(Qp) = 1 + pZp to pZp where µ(Qp) denotes the torsion subgroup of Q×
p .

It also follows that for each v|p,

a ∈ kunivv ⇔ a ∈ ker(logp ◦Nkv/Qp
).

Let

λk =
∑
v|p

logp ◦Nkv/Qp
: k× → ⊕v|p logpNkv/Qp

(k×v ) · v ∼=
∏
v|p

k×v /k
univ
v

be the map defined by λk(a) =
∑

v|p logp ◦Nkv/Qp
(a)v.

If we restrict λk to Uk(p) and extend it Uk(p)⊗ Zp by Zp-linearity, then we can
obtain a homomorphism gk of Zp-modules

gk : Uk(p)⊗ Zp −→ ⊕v|p logp ◦Nkv/Qp
(k×v ) · v.

Let r = rk(p) denote the number of primes of k dividing p. By the product formula
of the Artin map, the image of gk has a Zp-rank at most r − 1 (see page 455 of [6]
and page 11 of [17]). Let dk(p) ≥ 0 be the nonnegative integer such that

dk(p) = r − 1− rank (im(gk)).

Let r1 and r2 denote respectively the number of real and complex primes of k.
Notice that by Dirichlet’s unit theorem, Zp-rank rank (ker(gk)) of the kernel of gk
is given by

rank (ker(gk)) = r1 + r2 + dk.

The generalized Gross conjecture for (k, p) is then equivalent to

dk(p) = 0.

This is an extension of a conjecture of Gross (see [10]) due to Jaulent (see [14]
and [17]). In fact, Theorem 1.14 of [17] shows that the condition dk(p) = 0 is
equivalent to one of the three conditions (i), (ii) and (iii) defined in the beginning
of §2 for k∞ = kcyc∞ . For absolute abelian fields, the proof of Gross conjecture is
due to Greenberg (see [8]).

Let k∞ = kcyc∞ =
∪

n≥0 kn the cyclotomic Zp-extension of a number field k = k0
with kn the unique subfield of k∞ of degree pn over k. Let Γ denote the procyclic
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group G(k∞/k) and for each n ≥ 0, let Γn = G(k∞/kn) be the unique subgroup of
Γ with index pn. We recall the Tate module

Tp(k) = lim←−
n

G(Kn/kn)

of k where Kn is the maximal abelian unramified p-extension of kn such that all
primes dividing p split completely.

We now introduce the following equivalence of the generalized Gross conjecture
for (k, p)

♯ (Tp(k)Γ) <∞.
This follows from the following well known proposition using class field theory (see
Proposition of 1.2 of [17]).

dk(p) = 0 if and only if ♯ (Tp(k)Γ) <∞.

The generalized Gross conjecture can also be described in terms of the invariant
of the Tate module, i.e.,

♯ (Tp(k)
Γ) <∞

which follows from the identity rank Tp(k)Γ = rank Tp(k)
Γ. This follows directly

from the finiteness rank Tp(k) < ∞ (see Theorem 5 of §3 of [12]) and the exact
sequence

1 −→ Tp(k)
Γ −→ Tp(k)

γ−1−→ Tp(k) −→ Tp(k)Γ −→ 1.

3. Proof of Theorem 1.2

As explained in the introduction, the general strategy to relate the two con-
jectures is applying infinite class field theory over kcyc∞ =

∪
n≥0 kn. The Leopoldt

conjecture which concerns on the ranks of two modules Un(p) and ∆(Un(p)) reduces

to the ranks of the universal norms Un(p)univ and ∆(Un(p))
univ

through the weak
Leopoldt conjecture and Hilbert’s theorem 90 over kcyc∞ /k. These universal norm
groups finally are related to Tp(k) which can be related to the generalized Gross
conjecture through infinite class field theory.

In §§3.1 and 3.2, we recall the condition so-called (HNT) for p-units and respec-
tively Hilbert’s theorem 90 over a procyclic extension.

We prove Theorem 1.2 in the separated subsections. In §3.3, we prove that the
affirmation of the generalized Gross conjecture for (kcyc∞ , p) and Hilbert’s theorem

90 for ∆(Un(p)) over kcyc∞ /k for all n ≥ 0 implies the affirmation of the Leopoldt
conjecture for (kcyc∞ , p). In §3.4, we prove the first claim of Theorem 1.2 that the
affirmation of the Leopoldt conjecture for (k, p) implies Hilbert’s theorem 90 for

∆(Uk(p)) over k
cyc
∞ /k. This will complete the proof of Theorem 1.2.

In §3.5, we prove Corollary 1.3 of the introduction and explain special cases of
the corollary. In §3.6, we explain that results of Jaulent can also be used to prove
part of Theorem 1.2.

3.1. In this subsection, we will define a condition for the p-units which will be
called simply as (HNT) over a procyclic extension.

LetK/k be a finite cyclic extension and for a finite set S of primes of k containing
all ramified primes in K/k, let Uk(S) be the global S-units of k. Let

S′ = {w|v ; v ∈ S}
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be the set of primes of K lying over each prime v ∈ S. We also let UK(S) := UK(S′)
denote the global S′-units of K. Let

JK,S :=
∏
w/∈S′

Uv ×
∏
w∈S′

k×v

be the S-idele group and let

CK,S := JK,S/UK(S)

be the S-idele class group where we identify UK(S) with a subgroup of JK,S via
the the diagonal embedding

ϕK,S : UK(S) −→ JK,S .

Since w /∈ S is unramified in K/k, the local units Uw is cohomologically trivial
for w /∈ S. Hence by Shapiro’s lemma, we have

Ĥi(G(K/k), JK,S) ∼= Ĥi(G(K/k),
∏
w∈S′

Kw) ∼=
∏
v∈S

Ĥi(G(K/k), Ind
G(Kw/kv)
G(K/k) (Kw))

∼=
∏
v∈S

Ĥi(G(Kw/kv),K
×
w )

where w is a chosen prime of K above v.
Using the isomorphism above and Hilbert’s theorem 90, the exact sequence 1 −→

UK(S)
ϕK,S−→ JK,S −→ CK,S −→ 1 leads to

1 −→ Ĥ−1(GK/k, CK,S) −→
Uk(S)

NK/kUK(S)

ϕ̃K/k,S−→
∏
v∈S

Ĥ0(GKw/kv
,K×

w )

where NK/k is the norm map of K/k and ϕ̃K/k,S is the map induced from the
diagonal embedding ϕK,S . It follows that

Ĥ−1(GK/k, CK,S) ∼= ker(ϕ̃K/k,S)

We let

ϕK/k,S : Uk(S) −→
∏
w∈S

Ĥ0(GKw/kv
,K×

w ) ∼=
∏
w∈S

k×v /NKw/kv
K×

w

denote the composition of the natural projection π : Uk(S) −→ Uk(S)/NK/kUK(S)

and ϕ̃K/k,S : Uk(S)/NK/kUK(S)−→
∏

w∈S Ĥ
i(GKw/kv

,K×
w ). (HNT) for k× implies

that

NK/kUK(S) ⊂ ker(ϕK/k,S) ⊂ Uk(S) ∩NK/kK
×.

Definition 3.1. For a finite cyclic extension K/k, if ϕ̃K/k,S is injective, i.e.,

ker(ϕK/k,S) = NK/kUK(S),

then we say that Uk(S) satisfies (HNT) over K/k.

We extend the definition into an infinite Galois extension such that the Galois
group is an infinite procyclic group, a topological closure of an infinite cyclic group.

For an infinite procyclic extension K/k, let

ker(ϕK/k,S) :=
∩
L

ker(ϕL/k,S), Uk(S)
univ :=

∩
L

NL/kUL(S)
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for all finite cyclic subextensions L of K/k. For a finitely generated Z-module M ,
let M/tor(M) be the quotient of M by its torsion tor(M) and let

rankZ(M) := rankZ(M/tor(M))

be the Z-rank of M/tor(M).

Definition 3.2. For an infinite procyclic extension K/k, if

rankZ(ker(ϕK/k,S)) = rankZ(Uk(S)
univ),

then we say that Uk(S) satisfies (HNT) over K/k.

If we denote by ker(ϕK/k,S) the kernel of ϕK/k,S , then we have

1 −→ ker(ϕK/k,S)⊗ Zp −→ Uk(S)⊗ Zp −→ J
G(K/k)
K,S /NK/kJK,S ⊗ Zp

by tensoring with Zp to the following exact sequence,

1 −→ ker(ϕK/k,S) −→ Uk(S) −→ J
G(K/k)
K,S /NK/kJK,S .

If we denote by ϕK/k,S := ϕK/k,S ⊗ 1 the map induced from ϕK/k,S , then the exact
sequence above shows that

ker(ϕK/k,S) = ker(ϕK/k,S)⊗ Zp.

For an infinite procyclic extension K/k, let

ker(ϕK/k,S) :=
∩
L

ker(ϕL/k,S), (Uk(S)⊗ Zp)
univ :=

∩
L

NL/k(UL(S)⊗ Zp)

for all finite cyclic subextension L of K/k. Then (HNT) for Uk(S) implies that

NK/k(UK(S)⊗ Zp) ⊂ ker(ϕK/k,S) ⊂ (Uk(S) ∩NK/kK
×)⊗ Zp.

Definition 3.3. For an infinite procyclic extension K/k, if

rankZp(ker(ϕK/k,S)) = rankZp((Uk(S)⊗ Zp)
univ),

then we say that Uk(S)⊗ Zp satisfies (HNT) over K/k.

For a Zp-extension k∞/k and for the set S of primes lying over p, we write
ϕn := ϕkn/k,S for the map

ϕn : Uk(p) −→
∏
v|p

Ĥ0(Gkn,w/kv
, k×n,w)

∼=
∏
v|p

k×v /Nkn,w/kv
k×n,w

and write
ker(ϕ∞) := ker(ϕk∞,S) =

∩
n≥0

ker(ϕn).

Similarly, we write ϕn := ϕn ⊗ 1 for the map

ϕn : Uk(p)⊗ Zp −→
∏
v|p

Ĥ0(Gkn,w/kv
, k×n,w)

∼=
∏
v|p

k×v /Nkn,w/kv
k×n,w

and write
ker(ϕ∞) := ker(ϕk∞,S) =

∩
n≥0

ker(ϕn).

Remarks. 1. It is well known that the generalized Gross conjecture for (k, p)
and Hasse’s norm theorem(HNT) for Uk(p) over kcyc∞ /k are equivalent (cf. [9], [18]
and [24]). All proofs use the Kuz’min’s result on the invariant of the Tate module
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of k. In fact, independent of this, one can prove it in a more simple and direct way
not using the structure of Tate module but using cohomology of the p-idele class
group of k.

2. Notice that in general the first equality in the following equation does not
hold

rankZp(ker(ϕ∞)) = rankZp(ker(ϕ∞)⊗ Zp)

= rankZp(Uk(p)
univ ⊗ Zp).

For an abelian field k, since the conjectures of Leopoldt and Gross are true, we can
apply the remark after Theorem 1.2. Then when k is abelian and k∞ = kcyc∞ , a
counterexample to the above equality can be found easily by computing the ranks
using Theorem 1.2, and Theorem 2 of [2], i.e.,

r1 + r2 = rankZp(ker(ϕ∞)) > r2 − r′ + 1 = rankZ(k
×)univ

≥ rankZ(Uk(p)
univ) = rankZ(ker(ϕ∞))

where r′ = r or r/2 according as the decomposition field at p is real or imaginary.

3.2. In this subsection, we will recall Hilbert’s theorem 90 for compact submodules
over a Zp-extension k∞ =

∪
n≥0 kn of k. Let An be a compact Zp[G(kn/k)]-module

with the norm maps Nm,n : Am → An for all m ≥ n. If we define A(n)
∞ := lim←−s≥n

As

to be the inverse limits of {As}s≥n with respect to the norm maps Ns,n, then A
(n)
∞

is a Λ := lim←−s≥n
Zp[G(ks/kn)]-module.

Since An is compact, we have Auniv
n = Acomp

n and hence we have

A(m)
∞ = lim←−

n≥m

An = lim←−
n≥m

Auniv
n = lim←−

n≥m

Acomp
n .

As in the introduction, we say that Ak satisfy Hilbert’s theorem 90 over k∞/k if
the following isomorphisms hold for all n ≥ 0,

(A∞)Γ ∼= Auniv
k

where (A∞)Γ = A∞/(γ − 1)A∞.
Note that Hilbert’s theorem 90 for each finite level of compact group An will

show that

A
(n)
∞

lim←−s≥n
((γpn − 1)As)

∼= Auniv
n .

In fact, by taking inverse limits in the following commutative diagram

1 −−−−→ (γp
n − 1)At −−−−→ At

Nt−−−−→ Nt(At) −−−−→ 1yNt,s

yNt,s

yid

1 −−−−→ (γp
n − 1)As −−−−→ As

Ns−−−−→ Ns(As) −−−−→ 1

we have the exact sequence

1 −→ lim←−
s≥n

((γp
n

− 1)As) −→ A(n)
∞ −→

∩
s≥n

Ns(As) = Auniv
n −→ 1

where inverse limit is exact over compact groups.
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Since we have the natural inclusion

(γp
n

− 1)A(n)
∞ ⊂ lim←−

s≥n

((γp
n

− 1)As),

Hilbert’s theorem 90 for An over k∞/kn for all n ≥ 0 will be satisfied if Hilbert’s
theorem 90 for An is satisfied for all n ≥ 0, and if the above inclusion becomes
equality

(γp
n

− 1)A(n)
∞ = lim←−

s≥n

((γp
n

− 1)As).

Notice that the equality above is neither obvious nor easy to determine in general
settings. We will show that the modules studied here satisfy the equality.

Let Bn be a compact Zp[G(kn/k)]-module with norm maps defined as above and
let fn : An → Bn be the Galois equivariant map so that the following diagram is
commutative

An+1
fn+1−−−−→ Bn+1

Nn+1,n

y yNn+1,n

An
fn−−−−→ Bn.

Note that if we further assume that there is a Λ-module isomorphism

A∞ ∼= B∞

such that An and Bn also satisfy Hilbert’s theorem 90 over k∞/k for all n ≥ 0,
then we have Zp[G(kn/k)]-module isomorphism

Auniv
n
∼= (A∞)Γn

∼= (B∞)Γn
∼= Buniv

n for all n ≥ 0.

For the global p-units Un(p) of kn, let An = Un(p) = Un(p)⊗Zp and let fn = ∆n

be the map

∆n : Un(p) −→
∏
v|p

k̂×n,v.

This is the Zp-linear extension of the diagonal embedding

∆n : Un(p) −→
∏
v|p

k̂×n,v, α 7→ (α, · · · , α)

where k̂×n,v = lim←−n
k×n,v/k

×pn

n,v denotes the p-adic completion of the local field k×n,v.

Let Bn = Un(p) := ∆n(Un(p)) be the image. Then Un(p) is the topological closure

of Un(p) under ∆n in
∏

v|p k̂
×
n,v.

We have the commutative diagram

Un+1(p)
∆n+1−−−−→ Un+1(p)

Nn+1,n

y yNn+1,n

Un(p)
∆n−−−−→ Un(p).

Write

U (n)
∞ := lim←−

s≥n

Un(p), U
(n)

∞ := lim←−
s≥n

Us(p), ∆
(n)

:=
∏
s≥n

∆s

and

U∞ := U (0)
∞ , U∞ := U

(0)

∞ , ∆ := ∆
(0)
.
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The isomorphism of two inverse limits above is known as the weak Leopoldt con-
jecture for k∞/k and p,

∆ : U∞ ∼= U∞.

It is well known that the weak Leopoldt conjecture is true for the cyclotomic Zp-
extension kcyc∞ /k for any number field k and p (cf. §3 of Ch 10 of [22]).

3.3. In this subsection, we show that the affirmation of the generalized Gross con-
jecture for (kcyc∞ , p) and Hilbert’s theorem 90 for ∆(Un(p)) over kcyc∞ /kn for all
n ≥ 0 implies the Leopoldt conjecture for (kcyc∞ , p). We start with the basic lemmas
without proofs which are well known.

Lemma 3.4. Uk(p)univ = Uk(p)comp.

For the local field kv which is the completion of k at a finite place v, let kv,∞
be the corresponding Zp-extension of kv. By the definition, we have kcomp

v =
π(lim←−n

k×v,n) where kv,n is the subfield of kv,∞ of degree pn over kv. Write kloc =

k×
∩

v k
comp
v for the set of elements which are locally norm comparable at all finite

places of k

kloc = {α ∈ k×| there is (αv,n) ∈ lim←−
n

kv,n such that αv,0 = α for all finite places v}.

By Hasse’s local-global norm theorem, kloc is equal to the group kuniv of the uni-
versal norms of k×. Since it is well known that kuniv is contained in the group of
p-units (see Proposition 2.1 of [2]), we obtain the following lemma.

Lemma 3.5. kloc = kuniv = Uk(p)
∩

n≥0Nnk
×
n .

Let L be the maximal abelian unramified p-extension of k∞ where all primes
dividing p split completely. Then, obviously,

G(L/k∞) ∼= Tp(k)

and L is Galois over k with the following exact sequence

1 −→ G(L/k∞) −→ G(L/k) −→ Γ −→ 1.

Let L0 denote the maximal abelian subextension of L over k. Thus we have

G(L0/k∞) ∼= Tp(k)Γ(1)

and the exact sequence

1 −→ G(L0/k∞) −→ G(L0/k) −→ Γ −→ 1.(2)

Let F0 denote the maximal abelian extension of k containing k∞ and unramified
outside p, such that F/k∞ splits completely at all primes dividing p. Let H denote
the maximal unramified abelian extension of k such that all primes dividing p split
completely and K the maximal p-extension of k in H.

Let Sv denote the kernel of the Artin map k×v −→ G(k∞/k). Then, the class
field theory says that Sv is the group of universal norm elements of k×v over k∞/k.
By the class field theory, we have the following isomorphism

G(F0/k) ∼= Jk/A
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whereA = k×
∏

v-p Uv

∏
v|p Sv is the topological p-adic closure of k

× ∏
v-p Uv

∏
v|p Sv

(see the last line of page 455 in [6] or the equation 3.4 of page 280 in [18]). There
is exact sequence for the G(H/k)

1 −→ k×
∏
v-p

Uv

∏
v|p

k×v /A −→ Jk/A −→ G(H/k) −→ 1

induced from 1 −→ k×
∏

v-p Uv

∏
v|p k

×
v −→ Jk −→ G(H/k) −→ 1.

Let V n
p be the subgroup of

∏
v|p Uv which are ≡ 1 mod pn

V n
p = {a ∈

∏
v|p

Uv| a ≡ 1 mod pn}.

Then the groups V n
p k

× ∏
v-p Uv

∏
v|p Sv forms a fundamental system of neighbor-

hoods of the topological p-adic closure A of k×
∏

v-p Uv

∏
v|p Sv and its closure is

given as follows (see the proof of Theorem 7.8 of [21])

k×
∏
v-p

Uv

∏
v|p

Sv =
∩
n

(V n
p k

×
∏
v-p

Uv

∏
v|p

Sv).

The first term G(F0/H) ∼= k×
∏

v-p Uv

∏
v|p k

×
v /k

× ∏
v-p Uv

∏
v|p Sv of the short

exact sequence above leads to the following exact sequence (see page 456 of [6] or
page 280 of [18])

1 −→ X −→
∏
v|p

(k×v /Sv) −→ G(F0/H) −→ 1

where
X =

∏
v|p

Svδ(Uk(p))/
∏
v|p

Sv

denotes the topological p-adic closure of the image Uk(p) −→
∏

v|p(k
×
v /Sv).

In fact, we see that the first term k×
∏

v-p Uv

∏
v|p k

×
v /k

× ∏
v-p Uv

∏
v|p Sv is iso-

morphic to∏
v|p

k×v /
∏
v|p

k×v ∩ k×
∏
v-p

Uv

∏
v|p

Sv =
∏
v|p

k×v /
∏
v|p

k×v ∩
∩
V n
p k

×
∏
v-p

Uv

∏
v|p

Sv)

=
∏
v|p

k×v /
∏
v|p

Sv(
∏
v|p

k×v ∩
∩
V n
p k

×
∏
v-p

Uv)

Since ∏
v|p

Sv(
∩
V n
p (

∏
v|p

k×v ∩ k×
∏
v-p

Uv)) =
∏
v|p

Sv(
∩
V n
p (δ(Uk(p))))

=
∏
v|p

Svδ(Uk(p))

the first term above is isomorphic to∏
v|p

(k×v /Svδ(Uk(p))) ∼=
∏
v|p

(k×v /Sv)/
∏
v|p

(Svδ(Uk(p))/Sv).

From the identities above, the Artin map induces the exact sequence above. More-
over, it was shown from this that G(F0/H) is a p-group (see page 456 of [6]), i.e.,

G(F0/H) ∼= G(L0/K).
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Let r be the number of primes of k dividing p. By the assumption of Gross con-
jecture, the Zp-rank of G(F0/H) is equal to one since the Zp-rank of G(L0/k∞) ∼=
Tp(k)Γ is zero. Then, since G(K/k) is finite, the rank of the topological p-adic
closure X(p) of X is given by

rank (X(p)) = r − 1.(3)

It follows from the isomorphism

X =
∏
v|p

Svδ(Uk(p))/
∏
v|p

Sv
∼= δ(Uk(p))/δ(Uk(p)) ∩

∏
v|p

Sv

that there exists a short exact sequence for δ(Uk(p)) ∩
∏

v|p Sv

1 −→ δ(Uk(p)) ∩
∏
v|p

Sv −→ δ(Uk(p)) −→ X −→ 1.

Note that the topological p-adic closure δ(Uk(p))
∧
of δ(Uk(p)) in

∏
v|p k̂

×
v is equal

to ∆(Uk(p)),

δ(Uk(p))
∧
= ∆(Uk(p)).

We can compare the Zp-ranks of the topological p-adic closures of each terms above

rank (∆(Uk(p))) = rank (Ω) + rank (X(p))

where Ω denotes the topological p-adic closure of δ(Uk(p)) ∩
∏

v|p Sv.

We may assume that k∞/k is totally ramified at primes dividing p since the
Leopoldt conjecture descends to a subfield (see Corollary 10.3.11 of [22]), i.e., the
validity of the Leopoldt conjecture for a number field K implies the validity of the
Leopoldt conjecture for any subfield of K. We will use the same notation v for the
prime of kn lying over p as that of k.

It follows from §3.1 that

Uk(p) ∩
∏
v|p

Nnvk
×
n,v = ker(ϕn)

and that δ induces δ̃

1 −→ Uk(p)/ker(ϕn)
δ̃−→

∏
v|p

k×v /Nnv
k×n,v

where kn,v denotes the completion of kn at a prime dividing v and Nnv denotes the
norm map from kn,v to kv. By taking topological closure inside

∏
v|pNnvk

×
n,v to

the above identity, we have

(δ(Uk(p) ∩
∏
v|p

Nnvk
×
n,v) = δ(Uk(p)) ∩

∏
v|p

Nnvk
×
n,v = δ(ker(ϕn)).

This leads to

δ(Uk(p)) ∩
∏
v|p

Sv =
∩
n

(δ(Uk(p)) ∩
∏
v|p

Nnvk
×
n,v)

=
∩
n

δ(ker(ϕn))

By the generalized Gross conjecture, it follows that

(δ(ker(ϕn)) : δ(Nn(Un))) < (δ(ker(ϕn)) : δ(Nn(Un))) <∞
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independently of n ≥ 0 and that

rank δ(Uk(p)) ∩
∏
v|p

Sv = rank
∩
n

δ(Nn(Un)) = rank
∩
n

Nn(δ(Un))

= rank δ(Uk(p))
univ

.

By taking closures, the inclusion above results in

rank Ω = rank (δ(Uk(p)) ∩
∏
v|p

Sv)
∧ = rank (δ(Uk(p))

univ
)∧

= rank ∆(Uk(p))
univ

.

Here, the identity (δ(Uk(p))
univ

)∧ = ∆(Uk(p))
univ

follows from the the following
argument using the assumption that k∞/k is totally ramified at all primes dividing
p.

By the local Kronecker-Weber theorem, the intermediate field kv,n/kv is con-

tained in a composite field k
(f)
v,nLm of the field Lm of the πm-division points of

Lubin-Tate extensions and the unramified extension k
(f)
v,n of degree f(see the proof

of Corollary 7.7 of [21]).

By taking the ramification indices and linear disjointness over kv of Lm and k
(f)
v,n

into account, we see that kv,n is contained in Lm. Since the prime element πv is
a norm element of a prime element λm of Lm (see Theorem 7.4 of [21]), πv is the
norm of the prime element NLm/kv,n

λm of kv,n. It follows that any prime element

πv dividing p is a universal norm element over kv,∞/kv. Since the p-adic closure k̂v
of k×v = πZ

v ⊕ Uv is given by

k̂v = πZp
v ⊕ U1

v

where U1
v is the principal unit at v, we have

(k̂v)
univ = πZp

v ⊕ (U1
v )

univ

using universal norm property of πv. Since the norm map is continuous, it follows

that (U1
v )

univ is a closed subgroup of U1
v = Ûv and that ((U1

v )
univ)∧ = (U1

v )
univ,

i.e.,

Ûuniv
v = (µq × (U1

v )
univ)∧ = (U1

v )
univ = Ûv

univ

where Uv = µq ×U1
v for q = #(Uv/U

1
v ). It follows that the p-adic closure (̂kunivv ) of

kunivv is given by

(̂kunivv ) = (πZ
v ⊕ Uuniv

v )∧ = πZp
v ⊕ (U1

v )
univ = (k̂v)

univ.

Note that the difference between δ(Uk(p)) ⊂
∏
k×v and ∆(Uk(p)) ⊂

∏
k̂×v occurs

only in the cyclic groups generated by each prime πv dividing p, one πZ
v and the

other π
Zp
v which are, by the assumption, already norm comparable, and its tor-

sion subgroups in unit-parts which are also norm comparable. Hence the closure

(δ(Uk(p))
univ

)∧ is equal to ∆(Uk(p))
univ

as was claimed. It follows from Theorems
3.6 and 3.7 of §3.4 that

rank Uk(p)univ = rank (U ′
k(p)⊗ Zp)

univ = rank (U ′
∞)Γ = r1 + r2.



ON THE CONJECTURES OF GROSS AND LEOPOLDT 15

Since the weak Leopoldt conjecture is true for the cyclotomic Zp-extension of any
number field, we have (see Corollary 10.3.24 and Theorem 10.3.25 of [22])

∆(U∞(p)) := lim←−∆(Un(p)) ∼= lim←−(Un(p)) = U∞.

The above isomorphism and Hilbert’s theorem 90 for ∆(Uk(p)) lead to the fol-
lowing lower bound of rank (Ω)

rank (Ω) ≥ rank (∆(Uk(p))
univ

) = rank (∆(U∞(p))Γ
= rank (U∞)Γ

= rank Uk(p)univ

= r1 + r2.

Hence it results in the Leopoldt conjecture

rank (∆(Uk(p))) = rank (X(p)) + rank (Ω)

≥ r − 1 + r1 + r2.

This shows that if we assume that k∞/k is totally ramified, then the generalized
Gross conjecture and Hilbert’s theorem 90 imply the Leopoldt conjecture. Since
for an arbitrary number field k, there exists a sufficiently large n such that k∞/kn
is totally ramified at all primes dividing p (cf. §§3.4 and 6.2 of [12]), we have shown
that for such n, the assumption implies the validity of the Leopoldt conjecture for
kn. Since the Leoplodt conjecture descends to a subfield, we obtain the validity of
the Leopoldt conjecture for k from kn. This completes the proof. �

3.4. In this subsection, we will show that the Leopoldt conjecture for (k, p) implies

Hilbert’s theorem 90 for ∆(Uk(p)) over k
cyc
∞ /k.

For the p-units Un(p) of kn, let U
′
n(p) = Un(p)/µ(Un(p)) be the quotient of Un(p)

by its torsion µ(Un(p)), i.e., the Z-free part of Un(p) and let

U ′
∞ = lim←−(U

′
n(p)⊗ Zp)

denote the inverse limit of U ′
n(p) ⊗ Zp with respect to the norm maps. The rank

of U ′
∞ as a Γ-module is computed in the following theorem which is Theorem 7.2

of [18]. He proves this over the cyclotomic Zp-extension of k. This is reproved in a
generalized form by Greither (see Theorem of [9]).

In Theorem 3.7, we give a proof of the rank of (U ′
k(p) ⊗ Zp)

univ for any Zp-
extension of k using a result of Iwasawa together with an argument of compactness
and hence different from those of Kuz’min and Greither. Note that the proof of
Greither uses the direct limits rather than the inverse limits of ours. Even if it
seems to be dual each other, the proof given below we think is more simple and
direct.

Theorem 3.6. Let k be a number field and let r1 and r2 be the number of real and
complex places of k. Then U ′

∞ is a free Γ-module of rank r1 + r2.

Proof. See the proof of Theorem 7.2 of [18]. Since the weak Leopoldt conjecture
holds for the cyclotomic Zp-extension of a number field, we can find another proof
from Corollary 10.3.24 and Theorem 11.3.11 of [22].

In fact, the statement (ii) of Theorem 11.3.11 of loc.cit holds with S′
∞ = Scd = ∅

for the cyclotomic Zp-extension over any number field (cf. Remark and Corollary
11.3.12 of loc.cit). �
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Theorem 3.7. Let k∞ =
∪

n≥0 kn be an arbitrary Zp-extension of k. Then

rank (U ′
∞)Γ = rank (U ′

k(p)⊗ Zp)
univ = r1 + r2.

Proof. For a Z[G(kn/k)]-module M , we have

1 −→ H−1(G(kn/k),M) −→M/(γ − 1)M
Nn−→ Nn(M) −→ 1.

Since the Z-module Zp is flat (see (iii) of Theorem 3 of §3.4 of [4]), we have

Nn(M)⊗Z Zp = Nn(M ⊗Z Zp)

(M/(γ − 1)M)⊗ Zp = (M ⊗ Zp)/(γ − 1)(M ⊗ Zp).

By tensoring Zp, the exact sequence leads to

1 −→ H−1(G(kn/k),M)⊗Zp −→M⊗Zp/(γ−1)(M⊗Zp)
Nn⊗1−→ Nn(M⊗Zp) −→ 1.

This shows the following isomorphism

H−1(G(kn/k),M)⊗ Zp
∼= H−1(G(kn/k),M ⊗ Zp).

By putting M = k×n and using Hilbert’s theorem 90 for k×n , the above isomorphism
leads to

ker(Nn ⊗ 1) = (γ − 1)(k×n ⊗ Zp).

Hence we have the following commutative diagram

1 −−−−→ ((γ − 1)(k×n+1 ⊗ Zp)) ∩ Un+1(p)
univ −−−−→ Un+1(p)

univ

Nn+1,n

y yNn+1,n

1 −−−−→ ((γ − 1)(k×n ⊗ Zp)) ∩ Un(p)univ −−−−→ Un(p)univ

Nn+1⊗1−−−−−→ Uk(p)univ −−−−→ 1yid

Nn⊗1−−−−→ Uk(p)univ −−−−→ 1

where the surjectiveness of each rows follows from

Un(p)univ = Un(p)comp

which is Lemma 3.4. Write

Vn = ((γ − 1)(k×n ⊗ Zp)) ∩ Un(p).
By taking inverse limits with respect to the norm maps and using exactness of
inverse limit over compact groups, we have

1 −→ lim←−
n

Vn −→ U∞ −→ Uk(p)univ −→ 1.

Lemma 3.8. lim←−n
Vn = (γ − 1)U∞.

Proof. To prove Lemma 3.8, we need the following result of Iwasawa.

Lemma 3.9 (Iwasawa). The order #(H1(G(kn/k), Un(p))) is bounded indepen-
dently of n.

Proof. This follows immediately from [12]. More precisely, since every primes out-
side p are unramified over any Zp-extension k∞/k, Proposition 3 of [12] and the
five term exact sequence of Hochschild-Serre spectral sequence lead to the proof of
Lemma 3.9 (see Corollary 2.4.2 of [22] and Proposition 13.2 of [25]). �
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Notice that from Hilbert’s theorem 90,

H1(G(kn/k), Un(p)) ∼= H−1(G(kn/k), Un(p)) =
((γ − 1)k×n ) ∩ Un(p)

(γ − 1)Un(p)
.

We claim that for s ≥ n, the following inclusion map induced from the identity
map is injective

((γ − 1)k×n ) ∩ Un(p)

(γ − 1)Un(p)
−→ ((γ − 1)k×s ) ∩ Us(p)

(γ − 1)Us(p)
.

For an (γ − 1)α ∈ (γ − 1)k×n ∩ Un(p), let

(γ − 1)α = (γ − 1)e

for some e ∈ Us(p). Then aα = e ∈ Us(p) ∩ k×n = Un(p) for some a ∈ k×. Hence

(γ − 1)α = (γ − 1)(aα) ∈ (γ − 1)Un(p).

which leads to the injection of the natural map induced from the inclusion

1 −→ ((γ − 1)k×n ) ∩ Un(p)

(γ − 1)Un(p)
−→ ((γ − 1)k×s ) ∩ Us(p)

(γ − 1)Us(p)
.

By Lemma 3.9, we have the following lemma.

Lemma 3.10. For all sufficiently large s ≥ n ≫ 0, the inclusion map induces an
isomorphism

((γ − 1)k×n ) ∩ Un(p)

(γ − 1)Un(p)

∼=−→ ((γ − 1)k×s ) ∩ Us(p)

(γ − 1)Us(p)
<∞.

Since H−1(G(kn/k), Un(p)) = (γ− 1)k×n ∩Un(p)/(γ− 1)Un(p) is a p-group and the
norm map Ns,n is the ps−n power map for all sufficiently large s ≥ n by Lemma
3.10, we have

lim←−(
(γ − 1)k×n ∩ Un(p)

(γ − 1)Un(p)
) = 1.

This results in the following corollary.

Corollary 3.11. lim←−((γ − 1)k×n ∩ Un(p)) = lim←−((γ − 1)Un(p)).

Since Zp is flat over Z, we have

1 −→ (γ−1)Un(p)⊗Zp −→ ((γ−1)k×n ∩Un(p))⊗Zp −→ (
(γ − 1)k×n ∩ Un(p)

(γ − 1)Un(p)
)⊗Zp −→ 1.

By taking inverse limits with respect to the norm maps over compact groups, we
have

1→ lim←−((γ − 1)Un(p)⊗ Zp)→ lim←−(((γ − 1)k×n ∩ Un(p))⊗ Zp)→

→ lim←−((
(γ − 1)k×n ∩ Un(p)

(γ − 1)Un(p)
)⊗ Zp)→ 1.

Since H−1(G(kn/k), Un(p)) is a p-group, it follows from Corollary 3.11 that

lim←−((
(γ − 1)k×n ∩ Un(p)

(γ − 1)Un(p)
)⊗ Zp) = lim←−(

(γ − 1)k×n ∩ Un(p)

(γ − 1)Un(p)
) = 1

and hence the exact sequence leads to the following isomorphism

lim←−Vn = lim←−(((γ − 1)k×n ∩ Un(p))⊗ Zp) = lim←−((γ − 1)Un(p)⊗ Zp)
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where we used

((γ − 1)k×n ∩ Un(p))⊗ Zp = ((γ − 1)k×n ⊗ Zp) ∩ (Un(p)⊗ Zp) = Vn

since Zp is a flat over Z (see Remark 1 of §2.6, Chapter I of [3]).
The exact sequence 1 −→ Uk(p) −→ Un(p)

γ−1−→ (γ − 1)Un(p) −→ 1 leads to

1 −→ Uk(p)⊗ Zp −→ Un(p)⊗ Zp
γ−1−→ (γ − 1)Un(p)⊗ Zp −→ 1.

By taking inverse limits over compact groups, we have

(γ − 1)U∞ ∼= lim←−((γ − 1)Un(p) ⊗ Zp).

We obtain the proof of the claim

lim←−Vn
∼= (γ − 1)U∞

and thereby complete the proof of Lemma 3.8. �

Lemma 3.8 and Theorem 3.6 complete the proof of Theorem 3.7. �

From the weak Leopoldt conjecture for (k, p), Theorems 3.6 and 3.7 lead to

rank(lim←−∆(Un(p)))Γ = r1 + r2.

It follows from the natural surjective map (lim←−∆(Un(p)))Γ → ∆(Uk(p))
univ
→ 1

that ∆(Uk(p))
univ

has Zp-rank at most r1 + r2. From the Leopoldt conjecture for

(k, p), ∆k induces an injection 1 → (Uk(p))univ → ∆(Uk(p))
univ

which shows from

Theorem 3.7 that ∆(Uk(p))
univ

has Zp-rank at least r1 + r2 and hence exactly
r1 + r2. It follows that

∆(Uk(p))
univ ∼= (Uk(p))univ ∼= (U∞)Γ ∼= (lim←−∆(Un(p)))Γ

which is Hilbert’s theorem 90 for ∆(Uk(p)). This completes the proof of Theorem
1.2. �

Remark. We notice from the proof of Theorem 1.2 that if kcyc∞ /k is totally ram-
ified then the affirmation of the Leopoldt conjecture for (k, p) is equivalent to the

affirmation of Hilbert’s theorem 90 for ∆(Uk(p)) over k
cyc
∞ /k.

3.5. In this subsection we prove Corollary 1.3 of the introduction and explain
special cases of the corollary. We recall Corollary 1.3 of the introduction.

Corollary 3.12. (i) If k is a totally real field then the affirmation of the Leopoldt
conjecture for (kcyc∞ , p) is equivalent to the affirmation of the Gross conjecture for

(kcyc∞ , p) and Hilbert’s theorem 90 for ∆(Un(p)) over k
cyc
∞ /kn for all n ≥ 0.

(ii) If k is a CM-field with a maximal real subfield k+ then the affirmation of
the Leopoldt conjecture for (kcyc∞ , p) is equivalent to the affirmation of the Gross

conjecture for (k+cyc
∞ , p) and Hilbert’s theorem 90 for ∆(Uk+

n
(p)) over k+cyc

∞ /k+n for
all n ≥ 0.

Proof. It is well known that the Leopoldt conjecture implies the generalized Gross
conjecture when the base field k is totally real. In fact, we immediately recover
this from the equations (1) and (2) in the proof of Theorem 1.2 since the Leopoldt
conjecture is equivalent to the claim that k has only one Zp-extension when k is
totally real. Hence from Theorem 1.2, we prove the first claim of the corollary.
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For a CM-field k with its maximal real subfield k+, it is also well known that
the affirmation of the Leopoldt conjecture for (k, p) is equivalent to the affirmation
of the Leopoldt conjecture for (k+, p) (see Corollary 10.3.11 of [22]). Note that for
each n ≥ 0, the intermediate field k+n of k+cyc

∞ = k+Qcyc
∞ is totally real. Hence from

Theorem 1.2 and the first claim of the corollary, we can prove the second claim of
the corollary. This completes the proof of the corollary. �

When the number rk(p) of primes of k dividing p is one, we have the following
lemma which is well known. We prove this using a remark of Iwasawa.

Lemma 3.13. For a number field k, if rk(p) = 1, then the generalized Gross
conjecture holds for (k, p).

Proof. Let u(k∞/k) be the set of primes of k which are ramified in k∞/k. Then it
follows from the elementary Iwasawa theory and the class field theory that u(k∞/k)
is a nonempty subset of the set of primes of k dividing p. By the assumption of the
lemma, the cardinality ♯(u(k∞/k)) is equal to one for any Zp-extension k∞ of k. We
recall the observation of Iwasawa that a Zp-extension k∞ of k such that ♯(u(k∞/k))
is minimum in the family of all Zp-extensions of k must satisfy one of the equivalent
conditions (i),(ii) and (iii) of §2 (see page 804 of [13]). By taking k∞ = kcyc∞ , we see
that the generalized Gross conjecture holds for (k, p). This completes the proof of
the lemma. �

Remarks. 1. For every Zp-extension of k, there exists an integer n(k) ≥ 0 such
that every prime which ramifies in k∞/kn(k) is totally ramified (see Lemma 13.3
of [25]). Hence note that for all n ≥ n(k), the number r∞(p) of primes of k∞ lying
over p is equal to that of kn, i.e., r∞(p) = rkn(p).

2. As special cases of Corollary 3.12, if the real subfields in (i) and (ii) of
Corollary 3.12 have only one prime lying over p, then Lemma 3.13 provides us with
more simple descriptions.
(i) If k is a totally real field with r∞(p) = 1, then the affirmation of the Leopoldt

conjecture for (kcyc∞ , p) is equivalent to Hilbert’s theorem 90 for ∆(Un(p)) over
kcyc∞ /kn for all n ≥ 0.
(ii) If k is a CM-field with the maximal real subfield k+ such that r∞+(p) = 1, then
the affirmation of the Leopoldt conjecture for (kcyc∞ , p) is equivalent to Hilbert’s

theorem 90 for ∆(Uk+
n
(p)) over k+cyc

∞ /k+n for all n ≥ 0.
3. Now let k be an arbitrary number field which is not necessarily totally real

with r∞(p) = 1. We notice that due to Lemma 3.13, if r∞(p) = 1, then the
affirmation of the Leopoldt conjecture for (kcyc∞ , p) is still equivalent to Hilbert’s

theorem 90 for ∆(Un(p)) over kcyc∞ /kn for all n ≥ 0. This statement can also be
recovered in the proof of Theorem 1.2. In fact the proof of Theorem 1.2 use the
generalized Gross conjecture essentially only for (3) in the proof of Theorem 1.2
which is automatically satisfied when r∞(p) = 1.

4. Finally let k be an arbitrary number field which is not necessarily totally real
with r∞(p) > 1. In this case, we may apply a result of [24] with the assumption
that k is Galois containing µp and r∞(p) = 2. In this case the result shows that
the generalized Gross conjecture holds for (kcyc∞ , p). In fact if k is Galois containing
µp with r∞(p) = 2, then it follows that for each n ≥ 0, kn is also Galois containing
µp and rkn(p) = 2. Hence if k is Galois containing µp with r∞(p) = 2, then the af-
firmation of the Leopoldt conjecture for (kcyc∞ , p) is equivalent to Hilbert’s theorem
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90 for ∆(Un(p)) over k
cyc
∞ /kn for all n ≥ 0.

3.6. We are informed that results of Jaulent (cf. [15] and [16]) can also be used to
recover a part of Theorem 1.2 using results of [18] and [24]. Under the assumption
of the generalized Gross conjecture for (Kcyc

∞ , p), we will show that the Leopoldt

conjecture for (Kcyc
∞ , p) implies the condition of Hilbert’s theorem 90 for ∆(Uk(p))

over kcyc∞ /k.
We use the logarithmic description introduced by Jaulent in [15] to compute here

the Zp-rank of Ω. Let r1, r2 and s be the numbers of real places, complex places
and respectively places dividing p in K. We use the following definitions from [15].
(i) µK the p-subgroup of the group of roots of unity in K;
(ii) E ′K = Zp ⊗Z E

′
K the p-adification of the group of p-units E′

K
∼= µKZr1+r2+s−1;

(iii) ẼK the subgroup of logarithmic units of K;
(iv) µloc

K = (Zp ⊗K×) ∩
∏
µp;

(v) Rp =
∏

p|pRp the p-adic compactification of the semi-local product
∏

p|pKp;

(vi) µp =
∏

p|p µp the torsion subgroup of Rp.

From the proposition 1.1 of [24], it follows that the Γ-invariant Tp(K)Γ of the
Tate module Tp(K) of K is given by

Tp(K)Γ =
ẼK

(UK(p)⊗ Zp)univ
.

If we denote by δG(K) the defect of the generalized Gross conjecture(GGC) of K,
i.e.,

δG(K) := rankZp Tp(K)

then it follows from Theorem 3.7 that

ẼK ∼= µKZr1+r2+δG(K)
p .

This is in fact Proposition 3.4 of [15].
Since µloc

K is the kernel of the semi-localization homomorphism

sp : ẼK −→ Rp/µp,

we can write

µloc
K
∼= µKZδL(K)

p

where δL(K) denotes the defect of the Leopoldt conjecture(GLC) of K (cf. Scolie
2.13 of [16]) and hence

sp(ẼK) ∼= ẼK/µloc
K
∼= Zr1+r2−(δL(K)−δG(K))

p

where sp(ẼK) is just the group Ω. Hence we obtain immediately the following

statement. If one assumes rkZp(Ω) = rkZp(sp(ẼK)) = r1 + r2, then it follows that

δL(K) = δG(K).

In special this implies that (GLC) ⇐⇒ (GGC).
Moreover under the assumption (GGC) for (Kcyc

∞ , p), we will show that (GLC)

for (Kcyc
∞ , p) implies the condition of Hilbert’s theorem 90(H90) for ∆(Uk(p)) over

kcyc∞ /k. Put Gn := G(Kn/K). By Proposition 2 of [9], the generalized Gross

conjecture for (Kcyc
∞ , p) implies that the quotients ẼKn/µKn are free over the group
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algebra Zp[Gn] of rank r1+ r2. Thus, in this case, the logarithmic groups ẼKn have
trivial cohomology.

It follows from the weak Leopoldt conjecture overKcyc
∞ /K that the defect µloc

Kn
/µKn

of the Leopoldt conjecture stabilizes in Kcyc
∞ /K.

Hence the exact sequence

1 −→ µloc
Kn
−→ ẼKn −→ sp(ẼKn) −→ 1

and the well known fact that Hi(Gn, µKn) = 1 for all i ≥ 0 result in the following
isomorphisms

H1(Gn, sp(ẼKn))
∼= H2(Gn, µ

loc
Kn

) = H2(Gn, µ
loc
Kn
/µKn)

∼= (Zp/p
nZp)

δL(Kcyc
∞ ).

It follows that

H1(Gn, sp(ẼKn)) = 1⇐⇒ δL(Kn) = 0.

By taking inverse limits to the exact sequence of compact modules obtained from

H1(Gn, sp(ẼKn)) = 1,

1 −→ (γn − 1)sp(ẼKn) −→ sp(ẼKn) −→ Nnsp(ẼKn) −→ 1

it follows that

1 −→ lim←−(γn − 1)sp(ẼKn) −→ ∆(U∞(p)) −→ ∆(UK(p))
univ
−→ 1.

The exact sequence 1 −→ ker(γ − 1) −→ sp(ẼKn)
γ−1−→ (γ − 1)sp(ẼKn) −→ 1 leads

to

(γ − 1)∆(U∞(p)) ∼= lim←−((γ − 1)sp(ẼKn)

since lim←− ker(γ − 1) = 1. Hence we have

δL(Kn) = 0 for all n ≥ 0⇐⇒ H1(Gn, sp(ẼKn)) = 1 for all n ≥ 0 =⇒ (H90).

For the reverse direction (H90) =⇒ δL(Kn) = 0, we need to apply again §3.3.
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