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Abstract. A set A of positive integers is a Bh-set if all the sums of the form a1+ · · ·+ah, with

a1, . . . , ah ∈ A and a1 ≤ · · · ≤ ah, are distinct. We provide asymptotic bounds for the number

of Bh-sets of a given cardinality contained in the interval [n] = {1, . . . , n}. As a consequence of

our results, better upper bounds for a problem of Cameron and Erdős (1990) in the context of

Bh-sets are obtained. We use these results to estimate the maximum size of a Bh-set contained

in a typical (random) subset of [n] with a given cardinality.

1. Introduction4

We deal with a natural extension of the concept of Sidon sets: For a positive integer h ≥ 2, a5

set A of integers is called a Bh-set if all sums of the form a1 + · · ·+ah are distinct, where ai ∈ A6

and a1 ≤ · · · ≤ ah. We obtain Sidon sets letting h = 2. A central classical problem on Bh-sets is7

the determination of the maximum size Fh(n) of a Bh-set contained in [n] := {1, . . . , n}. Results8

of Chowla, Erdős, Singer, and Turán [5, 9, 10, 26] from the 1940s yield that F2(n) = (1+o(1))
√
n,9

where o(1) is a function that tends to 0 as n→∞. In 1962, Bose and Chowla [2] showed that10

Fh(n) ≥ (1 + o(1))n1/h for h ≥ 3. On the other hand, an easy argument gives that for every11

h ≥ 3,12

Fh(n) ≤ (h · h! · n)1/h ≤ h2n1/h. (1)

Successively better bounds of the form Fh(n) ≤ chn1/h were given in [4, 6, 8, 14, 19, 20, 21, 25].13

Currently, the best known upper bound on the constant ch is given by Green [11], who proved14

that15

c3 < 1.519, c4 < 1.627, and ch ≤
1

2e

(
h+

(
3

2
+ o(1)

)
log h

)
,

where o(1) → 0 as h → ∞. The interested reader is referred to the classical monograph of16

Halberstam and Roth [12] and to a recent survey by O’Bryant [22] and the references therein.17

We study two problems related to the classical problem of estimating Fh(n). The first problem18

is a natural generalization, to Bh-sets, of the problem of estimating the number of Sidon sets19

contained in [n], proposed by Cameron and Erdős [3]. Second, we investigate the maximum size20

of a Bh-set contained in a random subset of [n], in the spirit of [17, 18]. We present and discuss21

our results in detail in Section 2.22

Our notation is standard. Let us remark that we use the notation a � b as shorthand for23

the statement a/b → 0 as n → ∞. We omit floor b c and ceiling d e symbols when they are24
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not essential. We are mostly interested in large n; in our statements and inequalities we often25

tacitly assume that n is larger than a suitably large constant.26

2. The main results27

Our main results are presented in two separate sections. We first discuss enumeration results28

and then we move on to probabilistic consequences.29

2.1. A generalization of a problem of Cameron and Erdős. Let Zhn be the family of Bh-30

sets contained in [n]. In 1990, Cameron and Erdős [3] proposed the problem of estimating |Z2
n|,31

that is, the number of Sidon sets contained in [n]. We investigate the problem of estimating |Zhn |32

for arbitrary h ≥ 2. Recalling that Fh(n) is the maximum size of a Bh-set contained in [n], one33

trivially has34

2Fh(n) ≤ |Zhn | ≤
Fh(n)∑
i=0

(
n

i

)
≤ (1 + Fh(n))

(
n

Fh(n)

)
.

Since (1 + o(1))n1/h ≤ Fh(n) ≤ chn1/h for some constant ch, we have35

2(1+o(1))n1/h ≤ |Zhn | ≤ nc
′
hn

1/h
, (2)

for some constant c′h. We improve the upper bound on |Zhn | in (2) as follows.36

Theorem 2.1. For every h ≥ 2, we have |Zhn | ≤ 2Chn
1/h
, where Ch is a constant that depends37

only on h.38

The case h = 2 in Theorem 2.1 was established in [17] and later given another proof in [23].39

The proof of Theorem 2.1 is based on a refined version of the question. Let Zhn(t) be the family40

of Bh-sets contained in [n] with t elements. Theorem 2.1 is obtained from the following result,41

which estimates |Zhn(t)| for all t ≥ n1/(h+1)(log n)2.42

Theorem 2.2. For every h ≥ 2, there is a constant ch > 0 such that, for any t ≥ n1/(h+1)(log n)2,43

we have44

|Zhn(t)| ≤
(
chn

th

)t
. (3)

The derivation of Theorem 2.1 from Theorem 2.2 is given in Section 3 and Theorem 2.2 is45

proved in Section 4.2.46

We now turn to lower bounds for |Zhn(t)|. The bound in (4) in Proposition 2.3(i) below47

complements (3) in Theorem 2.2. On the other hand, Proposition 2.3(ii) shows that for small t,48

say, t � n1/(2h−1), the Bh-sets form a much larger proportion of the total number
(
n
t

)
of t-49

element sets (see (5)). Note that, for large t, namely, t ≥ n1/(h+1)(log n)2, Theorem 2.2 tells us50

that this proportion is, very roughly speaking, of the order of (n/th)
(
n
t

)−1 ≤ (n/th)t
/

(n/t)t =51

t−(h−1)t.52

Proposition 2.3. The following bounds hold for every h ≥ 2.53

(i) There is a constant c′h > 0 such that54

|Zhn(t)| ≥
(
c′hn

th

)t
. (4)
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(ii) For any δ > 0, there exists an ε > 0 such that, for any t ≤ εn1/(2h−1), we have55

|Zhn(t)| ≥ (1− δ)t
(
n

t

)
. (5)

Let us compare the bounds we have for |Zhn(t)| as t varies. For t � n1/(2h−1), Proposi-56

tion 2.3(ii) tells us that |Zhn(t)| is, up to a multiplicative factor of (1− o(1))t, equal to the total57

number
(
n
t

)
of t-element subsets of [n]. In this range, one might therefore say that Bh-sets are58

‘relatively abundant’. On the other hand, for n1/(h+1)(log n)2 ≤ t � n1/h, Theorem 2.2 and59

Proposition 2.3(i) determine |Zhn(t)| up to a multiplicative factor of the form ct, and we see that60

the probability that a random t-element subset of [n] is a Bh-set is roughly of the form t−(h−1)t.61

In this second range, Bh-sets are therefore scarcer. Finally, note that, by (1), if t > h2n1/h, we62

have Zhn(t) = ∅, that is, there are no Bh-sets in this third range.63

Note that, in the discussion above, we did not cover the whole range of t. In particular,64

we left open the interval n1/(2h−1) ≤ t ≤ n1/(h+1). We believe that the hypothesis on t in65

Theorem 2.2 may be weakened to a bound comparable to the one in Proposition 2.3(ii). We66

make this precise in Conjecture 7.1, given in Section 7. If true, this conjecture implies that,67

roughly speaking, there is a sudden change of behaviour around t0 = n1/(2h−1). Indeed, this68

conjecture implies that, for t considerably larger than this ‘critical’ value t0, we have that |Zhn(t)|69

is of the form
(
O(n/th)

)t
; this is in contrast to the fact that, as we have already seen, for t of70

smaller order than t0, we have that |Zhn(t)| is of the form (1− o(1))t
(
n
t

)
= (Θ(n/t))t.71

We now consider a generalization of Bh-sets. For a set S of integers and an integer z, let72

rS,h(z) =
∣∣∣{(a1, . . . , ah) ∈ Sh : a1 + · · ·+ ah = z and a1 ≤ · · · ≤ ah

}∣∣∣ . (6)

A set S is called a Bh[g]-set if rS,h(z) ≤ g for all integers z. Observe that a Bh[1]-set is simply a73

Bh-set and hence this definition extends the notion of Bh-sets. Let Fh,g(n) denote the maximum74

size of a Bh[g]-set contained in [n]. It is not hard to see that75

(1 + o(1))n1/h ≤ Fh(n) ≤ Fh,g(n) ≤ (gh · h!)1/hn1/h. (7)

Our final result in this section gives a lower bound for the number Zh,gn (t) of Bh[g]-sets of76

cardinality t contained in [n]. We shall see that a bound of the form (5) in Proposition 2.3(ii)77

holds for Zh,gn (t) even for t quite close to n1/h, at least if g = g(n) → ∞. This is somewhat78

surprising, as Zh,gn (t) = 0 if t > g1/hh2n1/h (see (7)). Furthermore, note that, therefore, there79

are basically only two ‘regimes’ for Bh[g]-sets if g → ∞, in contrast to the case of Bh-sets,80

for which we have identified three distinct regimes (Bh-sets are relatively abundant for small t81

(see (5)), rather scarce for intermediate t (see (3)) and non-existent for large t (see (1))).82

Theorem 2.4. Fix an integer h ≥ 2 and a function g = g(n). For every fixed δ > 0 and83

integer 1 ≤ t� h−1
(
n1−h!/g

)1/h
, we have84

(1− δ)t
(
n

t

)
≤ Zh,gn (t) ≤

(
n

t

)
. (8)

The proof of Theorem 2.4 is given in Section 6.85

2.2. Probabilistic results. Let [n]m be an m-element subset of [n] chosen uniformly at ran-86

dom. We are interested in estimating the cardinality of the largest Bh-sets contained in [n]m.87
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Figure 1. The graphs of b1 = b1(a) and b2 = b2(a) from the statement of Theorem 2.6

Our bounds for the size of the families Zhn(t) presented in Section 2.1 will be useful in investi-88

gating this problem. It will be convenient to have the following definition.89

Definition 2.5. For an integer h ≥ 2 and a set R, let Fh(R) denote the maximum size of a90

Bh-set contained in R.91

The asymptotic behavior of the random variable F2([n]m) was investigated in [17, 18]. Our92

goal here is to study Fh([n]m) for arbitrary h ≥ 3. A standard deletion argument implies that,93

with probability tending to 1 as n → ∞, or asymptotically almost surely (a.a.s. for short), we94

have95

Fh([n]m) = (1 + o(1))m if m = m(n)� n1/(2h−1),

where o(1) denotes some function that tends to 0 as n → ∞. On the other hand, if we apply96

the results of Schacht [24] and Conlon and Gowers [7] to Bh-sets, we have that a.a.s.97

Fh([n]m) = o(m) if m = m(n)� n1/(2h−1).

Thus n1/(2h−1) is the threshold for the property that Fh([n]m) = o(m).98

The following abridged version of our results gives us quite precise information on Fh([n]m)99

for a wide range of m and non-trivial but looser bounds for n1/(2h−1) ≤ m ≤ nh/(h+1); see also100

Figure 1.101

Theorem 2.6. Fix h ≥ 3 and let 0 ≤ a ≤ 1 be a fixed constant. Suppose m = m(n) =102

(1 + o(1))na. Then a.a.s.103

nb1+o(1) ≤ Fh([n]m) ≤ nb2+o(1), (9)

where104

b1(a) =


a, for 0 ≤ a ≤ 1/(2h− 1);

1/(2h− 1), for 1/(2h− 1) ≤ a ≤ h/(2h− 1);

a/h, for h/(2h− 1) ≤ a ≤ 1;

(10)

and105

b2(a) =


a, for 0 ≤ a ≤ 1/(h+ 1);

1/(h+ 1), for 1/(h+ 1) ≤ a ≤ h/(h+ 1);

a/h, for h/(h+ 1) ≤ a ≤ 1.

(11)

We prove the upper bounds in Theorem 2.6 (that is, (9) and (11)) in Sections 3. The lower106

bounds (that is, (9) and (10)) are proved in Section 5. Theorem 2.6 determines b = b(a) for107
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which Fh([n]m) = nb+o(1) when m = (1+o(1))na whenever a ≤ 1/(2h−1) or a ≥ h/(h+1). An108

interesting open question is the existence and determination of b = b(a) such that Fh([n]m) =109

nb+o(1) for 1/(2h− 1) ≤ a ≤ h/(h+ 1) (see Conjecture 7.2 in Section 7).110

As in the previous section, we now move on to consider Bh[g]-sets.111

Definition 2.7. For integers h ≥ 2 and g ≥ 1 and a set R, denote by Fh,g(R) the maximum112

size of a Bh[g]-set contained in R.113

As a natural extension of Theorem 2.6, we investigate the random variable Fh,g([n]m). Triv-114

ially, one has115

Fh,g([n]m) ≤ min{m,Fh,g(n)}. (12)

Surprisingly, as our next result shows, one can obtain a matching lower bound to this trivial116

upper bound, up to an no(1) factor, as long as one allows g to grow with n, however slowly.117

Theorem 2.8. Let h ≥ 2 be an integer and suppose g(n)→∞ as n→∞. Let 0 ≤ a ≤ 1 be a118

fixed constant and suppose m = m(n) = (1 + o(1))na. Then a.a.s.119

Fh,g([n]m) = nb+o(1), (13)

where120

b(a) =

a, for 0 ≤ a ≤ 1/h;

1/h, for 1/h ≤ a ≤ 1.
(14)

The upper bound on Fh,g([n]m) contained in Theorem 2.8 follows from (12). The lower bound121

follows from the following more precise result, which is proved in Section 6.122

Theorem 2.9. Fix an integer h ≥ 2 and a function g = g(n). For every fixed ε > 0 and 1 ≤123

m ≤ (ε/3h)
(
n1−h!/g

)1/h
, we a.a.s. have Fh,g([n]m) ≥ (1− ε)m.124

We remark that Theorem 2.9 above is closely related to Theorem 2.4 in the previous section.125

Indeed, we shall derive the latter from the former at the end of Section 6.126

3. Proof of Theorem 2.1 and proof of the upper bounds in Theorem 2.6127

We first derive Theorem 2.1 from Theorem 2.2.128

Proof of Theorem 2.1. The total number of subsets of [n] having fewer than n1/(h+1)(log n)2
129

elements is 2o(n
1/h). Therefore, we may focus on Bh-sets of cardinality at least n1/(h+1)(log n)2.130

In particular, by Theorem 2.2,131

|Zhn | ≤ 2o(n
1/h) +

∑
t≥n1/(h+1)(logn)2

(
chn

th

)t
. (15)

Since the function t 7→ (chn/t
h)t is maximized when t = (chn)1/h/e, it follows from (15) that,132

for an appropriate choice of the constant Ch,133

|Zhn | ≤ 2o(n
1/h) + n · exp

(
h(chn)1/h

e

)
≤ 2Chn

1/h
. �

We now turn to the proof of the upper bound on Fh([n]m) contained in Theorem 2.6. We134

start with the following easy remark.135
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Remark 3.1. At times, it will be convenient to work with the binomial random set [n]p, which136

is a random subset of [n], with each element of [n] included independently with probability p.137

The models [n]m and [n]p, with p = m/n, are fairly similar: If some property holds for [n]p138

with probability 1 − o(1/√pn) then the same property holds a.a.s. for [n]m (this follows from139

Pittel’s inequality; see [13, p. 17]).140

The following theorem is a direct corollary of Theorem 2.2.141

Theorem 3.2. There is an absolute constant C such that for every p ≥ n−1/(h+1)(log n)2h,142

a.a.s.,143

Fh([n]p) ≤ C(pn)1/h.

Moreover, for some absolute constant c > 0, the probability that the inequality above fails is at144

most exp
(
−c(pn)1/h

)
. �145

To derive Theorem 3.2 from Theorem 2.2, it suffices to use the following proposition.146

Proposition 3.3. The expected number of Bh-sets of cardinality t in [n]p is pt|Zhn(t)|. In147

particular,148

P
[
Fh([n]p) ≥ t

]
≤ pt|Zhn(t)|. �149

We now prove the upper bound on Fh([n]m) given in Theorem 2.6 (see (9) and (11)). Let us150

first recall that Remark 3.1 links the binomial random set [n]p, appearing in Theorem 3.2, to151

the random set [n]m that appears in Theorem 2.6. In what follows, we establish (9) and (11)152

in Theorem 2.6 using Theorem 3.2. We analyse three ranges of a separately.153

(i) 0 ≤ a ≤ 1/(h + 1): From the trivial bound Fh([n]m) ≤ m, we see that we may take154

b2(a) = a in this range of a.155

(ii) 1/(h+1) < a ≤ h/(h+1): It is clear that, in probability, Fh([n]m) is non-decreasing in m.156

Hence, b2(a) may be taken to be non-decreasing in a as well. Since, as we show next,157

we may take b2
(
h/(h+ 1)

)
= 1/(h+ 1), this monotonicity lets us take b2(a) = 1/(h+ 1)158

in this range of a.159

(iii) h/(h + 1) < a ≤ 1: In this range, b2(a) = a/h follows from Theorem 3.2. Indeed, if160

p ≥ n−1/(h+1)(log n)2h, then with probability at least 1−exp
(
−c(pn)1/h

)
≥ 1−o

(
1/
√
pn
)

161

we have Fh([n]p) ≤ C(pn)1/h for some absolute constant C > 0. Remark 3.1 implies162

that, a.a.s., Fh([n]m) ≤ Cm1/3 for all m ≥ nh/(h+1)(log n)2h, giving that we may take163

b2(a) = a/3 for a > h/(h+ 1), as claimed.164

4. Upper bounds for the number of Bh-sets of a given cardinality165

We prove Theorem 2.2 in this section. We follow a strategy that may be described very166

roughly as follows. Suppose a Bh-set S ⊂ [n] of cardinality s is given and one would like to167

extend it to a larger Bh-set of cardinality s′. We shall show that if s is not too small, then168

the number of such extensions is very small. To prove Theorem 2.2, we shall apply this fact169

iteratively, considering a sequence of cardinalities s < s′ < s′′ < . . . .170

4.1. Bounding the number of extensions of Bh-sets. We use a graph-based approach171

to bounding the number of extensions of a large Bh-set to a larger Bh-set. This approach is172
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inspired by the work of Kleitman and Winston [16] and Kleitman and Wilson [15]. We start173

with the following simple observation. If two distinct elements x, y ∈ [n] \ S satisfy174

x+ a1 + · · ·+ ah−1 = y + b1 + · · ·+ bh−1

for some {a1, . . . , ah−1}, {b1, . . . , bh−1} ∈
(

S

h− 1

)
, (16)

then S ∪ {x, y} is clearly not a Bh-set. This motivates our next definition.175

Definition 4.1. The collision graph CGS is a graph on the vertex set [n] \ S whose edges are176

all pairs of distinct elements x, y ∈ [n] \ S that satisfy (16).177

Clearly, by the construction of CGS , any set I of elements of [n]\S that extends S to a larger178

Bh-set S ∪ I must be an independent set in CGS .179

One of our main tools is the following lemma, implicit in the work of Kleitman and Win-180

ston [16], which provides an upper bound on the number of independent sets in graphs that181

have many edges in each sufficiently large vertex subset (see (18)). Lemma 4.2 in the version182

presented below is stated and proved in [17, 18], where it is used to bound the number of Sidon183

subsets of [n]. For other applications of this lemma to problems in additive combinatorics, we184

refer the reader to [1].185

Lemma 4.2. Let δ and β > 0 and q ∈ N be numbers satisfying186

eβqδ > 1. (17)

Suppose that G = (V,E) is a graph satisfying187

eG(A) ≥ β |A|2 for all A ⊂ V with |A| ≥ δ |V |. (18)

Then, for every m ≥ 1, there are at most188 (
|V |
q

)(
δ|V |
m

)
(19)

independent sets in G of size q +m.189

Remark 4.3. When we apply Lemma 4.2 to CGS , we shall take m � q to take advantage of190

the upper bound (19). In condition (18), there is a trade-off between β (larger is better) and δ191

(smaller is better) which needs to be optimized.192

We wish to show that CGS satisfies (18) with good parameters β and δ. To that end, we193

shall make use of two auxiliary graphs, which we now define.194

Definition 4.4. Let C̃GS be a multigraph version of CGS , where the multiplicity of a pair {x, y}195

of distinct x, y ∈ [n]\S is given by the number of pairs
(
{a1, . . . , ah−1}, {b1, . . . , bh−1}

)
∈
(
S
h−1

)2
196

that satisfy (16).197

It will be convenient for us to work with a certain subgraph of C̃GS that we define as follows.198

For a set S with s elements, let199

S1, . . . , Sh−1 (20)

be a fixed partition of S into sets with cardinalities that differ by at most one. Let C̃G
′
S be200

the subgraph of C̃GS in which the multiplicity of a pair x, y ∈ [n] \ S is the number of pairs201

7



(
{a1, . . . , ah−1}, {b1, . . . , bh−1}

)
∈
(
S
h−1

)2
that satisfy (16) and, moreover, are such that ai, bi ∈202

Si for each i ∈ [h− 1].203

Lemma 4.5. For every Bh-set S with s elements and every A ⊂ [n] \ S with |A| ≥ h2hn/sh−1,204

we have205

e
C̃GS

(A) ≥ e
C̃G
′
S
(A) ≥ s2h−2

h2hn
|A|2, (21)

where the edges in C̃GS and C̃G
′
S are counted with multiplicity.206

The proof of Lemma 4.5 will be given in Section 4.3. In view of Lemma 4.5, if the maximal207

multiplicity of an edge in C̃G
′
S is at most r, then the graph CGS satisfies the conditions of208

Lemma 4.2 with β = s2h−2/h2hrn and δ = h2h/sh−1. Consequently, we are interested in209

bounding the multiplicity of the edges of C̃G
′
S .210

Proposition 4.6. For every Bh-set S of cardinality s, the maximal multiplicity of an edge211

in C̃G
′
S does not exceed sh−2.212

We postpone the proof of Proposition 4.6 to Section 4.4. The following is an immediate213

corollary of Lemma 4.5 and Proposition 4.6.214

Corollary 4.7. If S is a Bh-set with s elements, then for every A ⊂ [n]\S with |A| ≥ h2hn/sh−1,215

eCGS
(A) ≥ sh

h2hn
|A|2. �216

4.2. Proof of Theorem 2.2. The case h = 2 of Theorem 2.2 is proved in [17] and we therefore217

restrict ourselves to h ≥ 3 here. We shall in fact prove the following: for every h ≥ 3 and218

t ≥ h2n1/(h+1)(log n)1+1/(h+1),219

|Zhn(t)| ≤
(

22he6h2hn

th

)t
.

In view of (1), we have Zhn(t) = 0 for t > h2n1/h. Hence we assume220

t ≤ h2n1/h, (22)

that is, h2n1/(h+1)(log n)1+1/(h+1) ≤ t ≤ h2n1/h. Let s0 = h2(n log n)1/(h+1) and let K be221

the largest integer satisfying t2−K ≥ 2s0. We define three sequences (sk)0≤k≤K , (qk)0≤k≤K and222

(mk)0≤k≤K as follows. We let q0 = s0/2 and m0 = t2−K−s0−q0. Moreover, we let s1 = t2−K ≥223

2s0, q1 = q0/2
h and m1 = t2−K+1 − s1 − q1. For k = 2, . . . ,K, we let sk = 2sk−1 = t2−K+k−1,224

qk = qk−1/2
h = q02−hk and mk = t2−K+k − sk − qk.225

We will bound the number of sequences S0 ⊂ · · · ⊂ SK ⊂ SK+1 of Bh-sets with |SK+1| = t226

and |Sk| = sk for all k = 0, . . . ,K, from which a bound on |Zhn(t)| will easily follow. Although227

we will only use the trivial bound
(
n
s0

)
for the number of choices for S0, we will then employ228

Lemma 4.2 to obtain a non-trivial bound on the number of extensions of Sk to Sk+1 for all k.229

Let us now estimate the number of extensions of a Bh-set Sk to a larger Bh-set Sk+1 for230

some k = 0, . . . ,K. By Corollary 4.7, the graph CGSk
is such that for all A ⊂ [n] \ Sk with231

|A| ≥ h2hn/sh−1
k ,232

eCGSk
(A) ≥ βk|A|2, where βk =

shk
h2hn

.

8



Let δk = h2h/sh−1
k ≥ 1/n and observe that233

eβkqk = exp

(
shk
h2hn

· q0

2hk

)
≥ exp

(
(2ks0)h · s0

h2hn · 2hk+1

)
≥ exp

(
sh+1

0

2h2hn

)
≥ n ≥ δ−1

k .

Consequently, CGSk
, δk, βk and qk satisfy the conditions of Lemma 4.2. Note that Sk+1 \ Sk234

must be an independent set in CGSk
with cardinality sk+1 − sk = qk + mk. Therefore, by235

Lemma 4.2, the number of extensions of Sk into a Bh-set Sk+1 is at most
(
n
qk

)(
δkn
mk

)
. Note that236 (

δ0n

m0

)
≤
(
δ0n

3s0

)
and

(
δkn

mk

)
≤
(
δkn

sk

)
for all 1 ≤ k ≤ K. Indeed, we have that m0 = s1 − s0 − q0 ≤ 4s0 − s0 ≤ 3s0 and also 3s0 ≤ δ0n

2237

and that for all 1 ≤ k ≤ K, mk ≤ sk ≤ δkn
2 as238

sk
δk

=
shk
h2h
≤
shK
h2h

=
(t/2)h

h2h
≤ n

2h
,

where the last inequality follows from our assumption on t. Hence,239 (
n

q0

)(
δ0n

m0

)
≤
(
n

q0

)(
δ0n

3s0

)
≤
(
n

q0

)(
n

3s0

)
≤ nq0n3s0 ,

and for all 1 ≤ k ≤ K240 (
n

qk

)(
δkn

mk

)
≤
(
n

qk

)(
δkn

sk

)
≤ nqk

(
eδkn

sk

)sk
≤ nqk

(
eh2hn

shk

)sk
.

It follows that241

|Zhn(t)| ≤
(
n

s0

) K∏
k=0

(
n

qk

)(
δkn

mk

)
≤ n4s0+

∑K
k=0 qk

K∏
k=1

(
eh2hn

shk

)sk
. (23)

Finally, since242

K∑
k=0

qk = q0

K∑
k=0

2−hk ≤ 2q0 = s0 ≤
t

log n

and243

K∏
k=1

(
eh2hn

shk

)sk
≤

K+1∏
k=1

(
eh2hn

(t2−k)h

)t2−k

≤

[(
eh2hn

th

)∑
k≥1 2−k

· 2h
∑

k≥1 k2−k

]t
≤
(

22heh2hn

th

)t
,

Theorem 2.2 follows from (23). �244

4.3. Proof of Lemma 4.5. Let S be a Bh-set with s elements and let S1, . . . , Sh−1 be the245

partition (20) of S from the definition of C̃G
′
S . Let A ⊂ [n] \ S be an arbitrary subset with246

|A| ≥ h2hn/sh−1. Consider the auxiliary bipartite graph Γ defined as follows. The vertex classes247

of Γ are A and a disjoint copy of [hn]. The edge set of Γ is defined as248

E(Γ) =
{

(x, u) ∈ A× [hn] : u = x+ a1 + · · ·+ ah−1 for some a1 ∈ S1, . . . , ah−1 ∈ Sh−1

}
.

Note that, because S is a Bh-set, for fixed x and u, there is at most one solution to u =249

x + a1 + · · · + ah−1 with a1 ∈ S1, . . . ah−1 ∈ Sh−1. We will now argue that the multiplicity of250

a pair {x, y} ∈
(
A
2

)
in the multigraph C̃G

′
S is the number of paths of length two connecting x251

to y in Γ. Indeed, there is a bijection between pairs
(
{a1, . . . , ah−1}, {b1, . . . , bh−1}

)
∈
(
S
h−1

)2
252
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with ai, bi ∈ Si for all i ∈ [h− 1] that satisfy (16) and paths xuy in Γ, where253

u = x+ a1 + · · ·+ ah−1 = y + b1 + · · ·+ bh−1.

Consequently, e
C̃G
′
S
(A) is the number of paths of length two in Γ containing two vertices in the254

class A. By Jensen’s inequality applied to the convex function f(α) =
(
α
2

)
= α(α− 1)/2,255

e
C̃G
′
S
(A) ≥

∑
u∈[hn]

(
degΓ(u)

2

)
≥ hn

(
e(Γ)/hn

2

)
.

On the other hand, since |A| ≥ h2hn/sh−1, we may assume that s ≥ h2 and hence,256

e(Γ) =
∑
x∈A

degΓ(x) = |A||S1| . . . |Sh−1| ≥
(⌊

s

h− 1

⌋)h−1

|A| ≥
( s
h

)h−1
|A|.

It follows that e(Γ) ≥ hhn and thus,257

e
C̃G
′
S
(A) ≥ hn

(
e(Γ)/hn

2

)
≥ e(Γ)

(
e(Γ)− hn

2hn

)
≥ e(Γ)2

hn

(
hh − h

2hh

)
≥ e(Γ)2

3hn
≥ s2h−2

h2hn
|A|2.

This concludes the proof of Lemma 4.5. �258

4.4. Proof of Proposition 4.6. Let S be a Bh-set of cardinality s and let S1, . . . , Sh−1 be259

the partition (20) of S from the definition of C̃G
′
S . For each pair i, j ∈ [h] with i ≤ j and each260

x ∈ Z, let261

N j
i (x) =

{
x+ ai + · · ·+ aj−1 : ai ∈ Si, . . . , aj−1 ∈ Sj−1

}
,

where N i
i (x) = {x}, and note that (since S is a Bh-set) the multiplicity of an edge {x, y} in the262

multigraph C̃G
′
S is |Nh

1 (x) ∩Nh
1 (y)|. The following claim implies the postulated bound on the263

multiplicity of {x, y}, as trivially x ∈ N1
1 (x) \N1

1 (y).264

Claim 4.8. Fix x and y ∈ Z with x 6= y. For every i ∈ [h], and every z ∈ N i
1(x) \N i

1(y),265 ∣∣Nh
i (z) ∩Nh

1 (y)
∣∣ ≤ sh−i−1. (24)

Proof. We prove the claim by induction on h − i. If i = h, then there is nothing to prove266

as Nh
h (z) = {z} is disjoint from Nh

1 (y). Assume then that i < h and let z be an arbitrary267

element of N i
1(x) \N i

1(y). If N i+1
i (z)∩N i+1

1 (y) = ∅, then, as N i+1
i (z) ⊂ N i+1

1 (x), the induction268

assumption implies that269 ∣∣Nh
i (z) ∩Nh

1 (y)
∣∣ ≤ ∑

u∈N i+1
i (z)

∣∣Nh
i+1(u) ∩Nh

1 (y)
∣∣

≤
∣∣N i+1

i (z)
∣∣ · sh−i−2 = |Si| · sh−i−2 ≤ sh−i−1.

Otherwise, there is a u ∈ N i+1
i (z)∩N i+1

i (y). If Nh
i+1(u′)∩Nh

1 (y) = ∅ for all u′ ∈ N i+1
i (z) \ {u},270

then271 ∣∣Nh
i (z) ∩Nh

1 (y)
∣∣ =

∣∣Nh
i+1(u) ∩Nh

1 (y)
∣∣ ≤ ∣∣Nh

i+1(u)
∣∣ ≤ |Si+1| · · · |Sh−1| ≤ sh−i−1.

Hence, we may assume that there is a u′ ∈ N i+1
i (z) \ {u} such that Nh

i+1(u′) ∩Nh
1 (y) 6= ∅. In272

this case, let j ∈ {i, . . . , h − 1} be the smallest index such that N j+1
i+1 (u′) ∩ N j+1

1 (y) 6= ∅ and273

let w ∈ N j+1
i+1 (u′) ∩N j+1

1 (y) be arbitrary. Moreover, let k ∈ {1, . . . , i} be the largest index such274
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that there is a w′ ∈ Nk
1 (y) satisfying u ∈ N i

k(w
′) and w ∈ N j+1

k (w′). Observe that275

u = w′ + ak + · · ·+ ai for some ak ∈ Sk, . . . , ai ∈ Si,

w = z + bi + · · ·+ bj for some bi ∈ Si, . . . , bj ∈ Sj ,

w = w′ + ck + · · ·+ cj for some ck ∈ Sk, . . . , cj ∈ Sj ,

u = z + d for some d ∈ Si.

Moreover, the minimality of j implies that bj 6= cj and the maximality of k implies that ak 6= ck.276

Also, since bi = u′ − z and u′ 6= u, then bi 6= d. It follows that277

ak + · · ·+ ai + bi + · · ·+ bj = ck + · · ·+ cj + d.

Since S is a Bh-set and j − k + 2 ≤ h, we must have278

{ak, . . . , ai, bi, . . . , bj} = {ck, . . . , cj , d}. (25)

Recall that the sets S1, . . . , Sh−1 are pairwise disjoint. If j > i, then bj 6= cj are the only279

elements of Sj in (25) and hence (25) cannot hold. If k = j = i, then (25) cannot hold as280

bi 6∈ {ci, d}. Therefore, it must be that k < i. But in this case, as ak 6= ck are the only elements281

of Sk, equality (25) again cannot hold. This contradiction completes the proof of the claim. �282

5. Lower bounds283

In this section, we establish the lower bounds in Theorem 2.6 and prove Proposition 2.3. For284

conciseness, we shall be somewhat sketchy when dealing with routine arguments.285

First, we show that a simple deletion argument (given in Lemma 5.1 below) yields that if286

m� n1/(2h−1), then Fh([n]m) = (1−o(1))m. This immediately implies that in Theorem 2.6, for287

0 ≤ a ≤ 1/(2h−1), one may take b1(a) = a (see (9) and (10)). Since F3([n]m) is non-decreasing288

in probability with respect to m, for a > 1/(2h − 1), we may take b1(a) = b1
(
1/(2h − 1)

)
=289

1/(2h−1). Moreover, as an easy corollary of Lemma 5.1, we will also derive Proposition 2.3(ii).290

In the second part of this section, following the strategy of [17, 18], for every t = o(n1/h), we291

will describe a deterministic construction of a large subfamily of Zhn(t). The existence of such292

a subfamily will immediately imply Proposition 2.3(i). Moreover, we shall show that if 1 �293

m ≤ n, then a.a.s. the set [n]m contains a Bh-set, with Ω(m1/h) elements, from the constructed294

subfamily. This yields that in Theorem 2.6, we may take b1(a) = a/h for all 0 ≤ a ≤ 1. Note295

that, in the range 1/(2h− 1) ≤ a ≤ h/(2h− 1), this is superseded by the bound obtained in the296

first part, that is, b1(a) = 1/(2h− 1).297

Lemma 5.1. If 1 ≤ m = o(n1/(2h−1)), then we a.a.s. have m ≥ Fh([n]m) ≥ (1− o(1))m.298

Proof. Let 1 ≤ m � n1/(2h−1) and let X be the random variable that counts the number of299

solutions to300

a1 + · · ·+ ah = b1 + · · ·+ bh with {a1, . . . , ah} 6= {b1, . . . , bh} (26)

and ai, bi ∈ [n]m for all i ∈ [h]. Let p = m/n. It follows from the linearity of expectation that301

E[X] = O

(
2h−1∑
k=2

pk+1nk

)
= O

(
p2hn2h−1

)
= o(m).

11



Hence, by Markov’s inequality, we a.a.s. have X = o(m). Since deleting from [n]m one element302

from the set {a1, b1, . . . , ah, bh} for each of the X solutions to (26) yields a Bh-set, the lemma303

follows. �304

Proof of Proposition 2.3(ii). Fix a constant δ > 0. Choose β > 0 small enough so that (1 −305

2β)(1− δ/3) ≥ 1− δ and
((1+β)t

βt

)
≤ (1 + δ/3)t for all t. Let ε > 0 be a small constant. Assume306

that t ≤ εn1/(2h−1). Lemma 5.1 with m = (1 + β)t implies that if ε is sufficiently small, then307

Fh([n]m) ≥ t with probability at least 1− β. It follows that, for large enough n, we have308

|Zhn(t)| ≥ (1− β)

(
n

(1 + β)t

)(
n

βt

)−1

≥ (1− 2β)

(
n

(1 + β)t

)(
n− t
βt

)−1

= (1− 2β)

(
n

t

)(
(1 + β)t

βt

)−1

≥ (1− 2β)(1− δ/3)t
(
n

t

)
≥ (1− δ)t

(
n

t

)
, (27)

as required. �309

In order to construct a large family of Bh-sets for larger t, we will use the following theorem310

of Bose and Chowla [5] (with the statement adapted for our purposes).311

Theorem 5.2. For every integer h ≥ 2, there is an integer mh such that for all m ≥ mh, there312

exists a Bh-set Y ⊂ Zm with |Y | = Ω
(
m1/h

)
. �313

Let us now fix some n and m with n ≥ m such that, letting p = m/n, the numbers 1/(hp) and314

pn/h are integers. Theorem 5.2 implies the existence of a Bh-set Y ⊂ Zm with |Y | = Ω
(
m1/h

)
,315

provided that m is sufficiently large. We will show that there is a subset U ⊂ [n] and a projection316

π : U ⊂ [n]→ Zm such that317

(a) any set S ⊂ π−1(Y ) with |S ∩ π−1(x)| ≤ 1 for all x ∈ Y is a Bh-set;318

(b) |π−1(x)| ≥ 1/(hp) for s = Ω(|Y |) elements x ∈ Y .319

We first show that the existence of π and U satisfying conditions (a) and (b) above implies320

Proposition 2.3(i).321

Proof of Proposition 2.3(i). Note that, choosing c′h appropriately small (see (4)), we may sup-322

pose that t ≤ εn1/h for any given ε > 0. Therefore, let us assume that t ≤ εn1/h for a323

suitably small constant ε for our estimates below to hold. Choose m = O(th) ≤ n so that324

s = Ω(|Y |) = Ω
(
m1/h

)
in condition (b) is at least t. Let Y ′ ⊂ Y be a set of t num-325

bers x such that |π−1(x)| ≥ 1/(hp) for each x ∈ Y ′. Condition (a) implies that each set326

T ⊂ π−1(Y ′) ⊂ [n] satisfying |T ∩ π−1(x)| = 1 for every x ∈ Y ′ is a Bh-set. Since m = O(th),327

we have |π−1(x)| ≥ 1/(hp) = n/(hm) = Ω(n/th), and hence there are
(
Ω(n/th

)
)t such sets T ,328

proving the bound in (4). �329

Next, we show that the existence of π and U as above also yields the claimed lower bound in330

Theorem 2.6.331

Lemma 5.3. For any 1� m ≤ n, we a.a.s. have Fh([n]m) = Ω(m1/h).332

Proof. In the view of Lemma 5.1, we may assume that m � n1/(2h). It will be convenient for333

us to use the model [n]p with p = m/n rather than [n]m (recall Remark 3.1). Without loss of334

generality we assume that n is sufficiently large and that 1/(hp), pn, pn/h ∈ N. Fix some π335

and U satisfying conditions (a) and (b) above. Define a set S by selecting the smallest element336

12



from [n]p∩π−1(x) for each x ∈ Y , whenever this set is non-empty. By (a), the set S is a Bh-set.337

It suffices to show that a.a.s. |S| = Ω(m1/h).338

Using (b), let Y ′ ⊂ Y be a family of s = Ω(|Y |) = Ω(m1/h) elements x ∈ Y satisfying339

|π−1(x)| ≥ 1/(hp). For any x ∈ Y ′, the probability that [n]p∩π−1(x) = ∅ is q = (1−p)|π−1(x)| ≤340

(1 − p)1/(hp) ≤ e−p/(hp) = e−1/h < 1. It follows from the fact that the sets {π−1(x)}x∈Y ′ are341

disjoint that the number of elements x ∈ Y ′ for which [n]p ∩ π−1(x) = ∅ is a random variable342

following the binomial distribution with parameters |Y ′| and q < 1. Consequently, by the343

Chernoff’s bound,344

P

[∣∣{x ∈ Y : [n]p ∩ π−1(x) 6= ∅
}∣∣ < 1− q

2
|Y ′|

]
≤ exp{−c |Y |},

for some constant c > 0. Therefore, with probability at least 1 − exp
(
−Ω(m1/h)

)
there are345

at least 1−q
2 |Y

′| elements x ∈ Y which satisfy [n]p ∩ π−1(x) 6= ∅, thus proving that a.a.s.346

Fh([n]m) ≥ Ω
(
m1/h

)
. �347

Finally, we define the projection π and its domain U ⊂ [n]. We first partition [hn] into348

intervals349

Ij =

[
j

p
+ 1,

j + 1

p

]
, j = 0, . . . , hpn− 1.

Furthermore, we subdivide each of the intervals above into h subintervals of equal lengths,350

namely,351

Ij,k =

[
j

p
+ 1 +

k

hp
,
j

p
+
k + 1

hp

]
, j = 0, . . . , hpn− 1 and k = 0, . . . , h− 1. (28)

The domain of π is defined as352

U =

pn−1⋃
j=0

Ij,0. (29)

Note that U ⊂ [n] since j < pn in the union above. The projection π is then defined by353

π(x) = j ∈ Zpn whenever x ∈ Ij,0. Clearly, condition (b) is satisfied.354

Let us now prove that condition (a) is satisfied. Let S ⊂ π−1(Y ) be a set satisfying |S ∩355

π−1(x)| ≤ 1 for all x ∈ Y . This ensures that π|S is a one-to-one map. Moreover, π(S) ⊂ Y is356

a Bh-set. Let (a1, . . . , ah) be an arbitrary h-tuple such that a1, . . . , ah ∈ S with a1 ≤ · · · ≤ ah357

and let 0 ≤ ` ≤ hpn− 1 be such that a1 + · · ·+ ah ∈ I`. We claim that π(a1) + · · ·+ π(ah) = `358

mod pn. Indeed, for each i ∈ [h], let ji be such that ai ∈ Iji,0 and observe that by (28), we359

have ai ∈
[ ji
p + 1, jip + 1

hp

]
. Therefore,360

a1 + · · ·+ ah ∈
[
j1 + · · ·+ jh

p
+ h,

j1 + · · ·+ jh
p

+ h× 1

hp

]
⊂ Ij1+···+jh .

Hence ` = j1 + · · · + jh and since π(ai) = ji mod pn, it follows that π(a1) + · · · + π(ah) = `361

mod pn. Since π(S) is a Bh-set and π|S is one-to-one, it follows that no other h-tuple (b1, . . . , bh)362

with b1, . . . , bh ∈ S and b1 ≤ · · · ≤ bh can satisfy π(b1) + · · · + π(bh) = ` mod pn. In other363

words, no other h-tuple (b1, . . . , bh) satisfies b1 + · · ·+ bh ∈ I` and hence S must be a Bh-set.364

6. Proofs of Theorems 2.4 and 2.9365

We need some preparations for the proofs of Theorems 2.4 and 2.9. For the remainder of this366

section, we fix an integer h ≥ 2 and a function g = g(n). Since we are only proving asymptotic367
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results, we shall make the technical assumption that n is relatively prime to h!. Furthermore,368

it will be more convenient for us to work with modular arithmetic, that is, we consider addition369

modulo n. Clearly, any modular Bh[g]-subset of Zn naturally corresponds to a Bh[g]-subset370

of [n] and hence the claimed lower bound results for [n] follows from the corresponding results371

for Zn.372

Recall the definition of rS,h (see (6) in Section 2.2). For every 1 ≤ ` ≤ h and λ > 0 and373

S ⊂ Zn, let374

ES,`(λ) =
∑
z∈Zn

exp
(
λ rS,`(z)

)
.

Note that rS,1(z) = 1[z ∈ S] and therefore375

ES,1(λ) = n− |S|+ |S|eλ = n+ (eλ − 1)|S|. (30)

The following claim bounds the average increase of ES,`(λ) as we add some y ∈ Zn to S.376

Claim 6.1. With the assumptions above, for any S 6= ∅, we have377

Ey∈Zn

[
ES∪{y},`(λ)− ES,`(λ)

]
≤ 1

n
ES,`(λ) (ES,`−1(`λ)− n) . (31)

Proof. Note first that378

rS∪{y},`(z) ≤ rS,`(z) + 1[z = `y] +
`−1∑
i=1

rS,`−i(z − iy).

Hence,379 ∑
y∈Zn

ES∪{y},`(λ) ≤
∑
z∈Zn

[
exp
(
λ rS,`(z)

) ∑
y∈Zn

exp
(
λ1[z = `y]

) `−1∏
i=1

exp
(
λ rS,`−i(z − iy)

)]
.

It follows from Hölder’s inequality that for every z ∈ Zn, the inner sum on the right-hand side380

of the above inequality is bounded from above by381 ∑
y∈Zn

exp
(
λ1[z = `y]

)`1/`
`−1∏
i=1

∑
y∈Zn

exp
(
λ rS,`−i(z − iy)

)`1/`

.

Consequently, recalling that we suppose that h! and n are co-prime and thus that each i ∈ [`]382

is co-prime with n, we have383

∑
y∈Zn

ES∪{y},`(λ) ≤ ES,`(λ)

(
(n+ e`λ − 1)

`−1∏
i=i

ES,`−i(`λ)

)1/`

. (32)

Observe that if S 6= ∅, then for all ` ≥ `′,384

ES,`(λ) ≥ ES,`′(λ) ≥ n+ eλ − 1. (33)

To see this, note that for every ` ∈ [h− 1], every x ∈ S, and every z ∈ Zn, we have rS,`+1(z) ≥385

rS,`(z − x). Inequalities (32) and (33) imply that for every non-empty S and all λ > 0,386 ∑
y∈Zn

ES∪{y},`(λ) ≤ ES,`(λ)ES,`−1(`λ). (34)

Inequality (31) follows from (34) and the claim is proved. �387
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We now set388

λ` =
h! log(2n)

`! g

for each ` ∈ [h]. We shall call y ∈ Zn \ S a good extension of a set S if for all 2 ≤ ` ≤ h,389

ES∪{y},`(λ`) ≤ ES,`(λ`)
(

1 +
2h

ε

ES,`−1(λ`−1)− n
n

)
. (35)

Claim 6.2. With the assumptions above, for any S 6= ∅ with |S| ≤ εn/6, at least (1 − 2ε/3)n390

elements y ∈ Zn are good extensions of S.391

Proof. Inequality (31) in Claim 6.1 and Markov’s inequality, together with the fact that `λ` =392

λ`−1, tell us that the number of y ∈ Zn that violate (35) is at most (ε/2h)n. Summing over393

all ` and recalling that |S| ≤ εn/6, we obtain that the number of y ∈ Zn that fail to be good is394

at most (2ε/3)n. �395

We are now in position to prove Theorem 2.9.396

Proof of Theorem 2.9. Fix ε > 0 and assume that 1 ≤ m ≤ (ε/3h)
(
n1−h!/g

)1/h
. We may and397

shall assume that m ≥ log n, since otherwise the random set [n]m is a.a.s. a Bh-set and we are398

done. Therefore, we have m→∞.399

Let R = (x1, . . . , xm) be an ordered random subset of Zn. We construct a subset S ⊂ R as400

follows. Let S1 = {x1} and for 1 < j ≤ m, let401

Sj =

Sj−1 ∪ {xj}, if xj is a good extension of Sj−1;

Sj−1, otherwise.

We shall show that S = Sm is a Bh[g]-set and that a.a.s. it has at least (1− ε)m elements.402

Claim 6.3. The set S = Sm is a Bh[g]-set.403

Proof. We shall first prove by induction that for every 1 ≤ ` ≤ h and every 1 ≤ j ≤ m, the404

following inequality holds405

ϕ(`, j) : ESj ,`(λ`) ≤ n+ (2h/ε)`−1eλ1 |Sj |`.

Observe that regardless of x1, for every ` ∈ [h],406

ES1,`(λ`) = E{x1},`(λ`) = (n− 1) + eλ` ≤ n+ eλ1

and hence ϕ(`, 1) holds for all `. Moreover, it follows from (30) that ϕ(1, j) holds for all j.407

Thus, it is enough to prove that if ` ≥ 2, then, assuming that ϕ(`′, j′) holds for all pairs (`′, j′)408

such that `′ < ` or j′ < j, the inequality ϕ(`, j) is satisfied as well. If Sj = Sj−1, then there is409

nothing to show, and so we may assume that Sj = Sj−1 ∪ {xj}, where xj is a good extension410

of Sj−1. In this case, letting s = |Sj−1|, we have411

ESj ,`(λ`) ≤ ESj−1,`(λ`)

(
1 +

2h

ε

ESj−1,`−1(λ`−1)− n
n

)
≤
(
n+ (2h/ε)`−1eλ1s`

)(
1 +

2h

ε

(2h/ε)`−2eλ1s`−1

n

)
= n+ (2h/ε)`−1eλ1s` + (2h/ε)`−1eλ1s`−1 +

(2h/ε)2`−3e2λ1s2`−1

n

≤ n+ (2h/ε)`−1eλ1(s+ 1)`.
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To see the last inequality above, note that (s+ 1)` ≥ s` + 2s`−1 and that412

(2h/ε)`−1s`eλ1 ≤ (2h/ε)h−1mheλ1 ≤ n, (36)

since (2hm/ε)h ≤ n1−h!/g ≤ e−λ1n.413

In particular, ϕ(h,m) holds and therefore, by (36), for every z ∈ S,414

exp
(
λh rS,h(z)

)
≤ ES,h(λh) ≤ n+ (2h/ε)h−1mheλ1 ≤ 2n

and hence rS,h(z) ≤ λ−1
h log(2n) = g. In other words, S is a Bh[g]-set. �415

Finally, we estimate the probability that |S| < (1 − ε)m. If this is the case, then there are416

more than εm indices j for which xj is not a good extension of Sj−1. For each j, at least417

(1− 2ε/3)n elements of Zn \ {x1, . . . , xj−1} are good extensions of Sj−1. Since xj is a uniformly418

chosen random element of Zn \ {x1, . . . , xj−1}, letting Bin(N, p) be a binomial random variable419

with parameters N and p, we have420

P
(
|S| < (1− ε)m

)
≤ P

(
Bin(m, 1− 2ε/3) < (1− ε)m

)
≤ exp(−cεm)

for some constant cε > 0, and hence |S| ≥ (1 − ε)m with probability 1 − o(1). This completes421

the proof of Theorem 2.9. �422

We now derive Theorem 2.4 from Theorem 2.9 in the same way that we deduced Proposi-423

tion 2.3(ii) from Lemma 5.1.424

Proof of Theorem 2.4. Fix δ > 0. Let 0 < β ≤ 1/6 be such that (1 − 2β)(1 − δ/3) ≥ 1 − δ425

and
((1+β)t

βt

)
≤ (1 + δ/3)t. Now let m = (1 + β)t, and note that we may suppose that m ≤426

(β/6h)
(
n1−h!/g

)1/h
. It follows from Theorem 2.9 that Fh,g([n]m) ≥ (1 − β/2)m ≥ t with427

probability at least 1− β. We conclude that428

Zh,gn (t) ≥ (1− β)

(
n

(1 + β)t

)(
n

βt

)−1

. (37)

The lower bound in (8) follows from (37) by the calculations given in (27). �429

7. Concluding remarks430

We close with two conjectures.431

Conjecture 7.1. Fix an integer h ≥ 3 and ε > 0. For every t ≥ n1/(2h−1)+ε and every large432

enough n, we have433

|Zhn(t)| ≤
(

n

th−ε

)t
. (38)

Note that Proposition 2.3 implies that, if true, Conjecture 7.1 is basically optimal.434

Conjecture 7.2. Let h ≥ 3 be an integer. Suppose 0 ≤ a ≤ 1 is a fixed constant and m =435

m(n) = (1 + o(1))na. Then a.a.s. Fh([n]m) = nb+o(1), where b = b1(a) and b1(a) is as given436

in (10).437

It is worth mentioning that an argument following the lines of the proof of the upper bound438

in Theorem 2.6 shows that Conjecture 7.1 implies Conjecture 7.2. At the time of writing, we439

strongly believe that we are able to prove Conjecture 7.1 for h = 3.440
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9. P. Erdős, On a problem of Sidon in additive number theory and on some related problems. Addendum, J.454

London Math. Soc. 19 (1944), 208.455
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20. F. Krückeberg, B2-Folgen und verwandte Zahlenfolgen, J. Reine Angew. Math. 206 (1961), 53–60.472

21. B. Lindström, A remark on B4-sequences, J. Combinatorial Theory 7 (1969), 276–277.473

22. K. O’Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin.474

(2004), Dynamic surveys 11, 39 pp. (electronic).475

23. D. Saxton and A. Thomason, Hypergraph containers, arXiv:1204.6595, April 2012.476

24. M. Schacht, Extremal results for random discrete structures, Submitted, 27pp, 2009.477
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