ON THE NUMBER OF B_{h}-SETS

DOMINGOS DELLAMONICA JR., YOSHIHARU KOHAYAKAWA, SANG JUNE LEE, VOJTĚCH RÖDL, AND WOJCIECH SAMOTIJ

Abstract

A set A of positive integers is a B_{h}-set if all the sums of the form $a_{1}+\cdots+a_{h}$, with $a_{1}, \ldots, a_{h} \in A$ and $a_{1} \leq \cdots \leq a_{h}$, are distinct. We provide asymptotic bounds for the number of B_{h}-sets of a given cardinality contained in the interval $[n]=\{1, \ldots, n\}$. As a consequence of our results, better upper bounds for a problem of Cameron and Erdős (1990) in the context of B_{h}-sets are obtained. We use these results to estimate the maximum size of a B_{h}-set contained in a typical (random) subset of $[n]$ with a given cardinality.

1. Introduction

We deal with a natural extension of the concept of Sidon sets: For a positive integer $h \geq 2$, a set A of integers is called a B_{h}-set if all sums of the form $a_{1}+\cdots+a_{h}$ are distinct, where $a_{i} \in A$ and $a_{1} \leq \cdots \leq a_{h}$. We obtain Sidon sets letting $h=2$. A central classical problem on B_{h}-sets is the determination of the maximum size $F_{h}(n)$ of a B_{h}-set contained in $[n]:=\{1, \ldots, n\}$. Results of Chowla, Erdős, Singer, and Turán [5, 9, 10, 26] from the 1940s yield that $F_{2}(n)=(1+o(1)) \sqrt{n}$, where $o(1)$ is a function that tends to 0 as $n \rightarrow \infty$. In 1962, Bose and Chowla [2] showed that $F_{h}(n) \geq(1+o(1)) n^{1 / h}$ for $h \geq 3$. On the other hand, an easy argument gives that for every $h \geq 3$,

$$
\begin{equation*}
F_{h}(n) \leq(h \cdot h!\cdot n)^{1 / h} \leq h^{2} n^{1 / h} \tag{1}
\end{equation*}
$$

Successively better bounds of the form $F_{h}(n) \leq c_{h} n^{1 / h}$ were given in [4, 6, 8, 14, 19, 20, 21, 25]. Currently, the best known upper bound on the constant c_{h} is given by Green [11], who proved that

$$
c_{3}<1.519, \quad c_{4}<1.627, \quad \text { and } \quad c_{h} \leq \frac{1}{2 e}\left(h+\left(\frac{3}{2}+o(1)\right) \log h\right)
$$

where $o(1) \rightarrow 0$ as $h \rightarrow \infty$. The interested reader is referred to the classical monograph of Halberstam and Roth [12] and to a recent survey by O'Bryant [22] and the references therein.

We study two problems related to the classical problem of estimating $F_{h}(n)$. The first problem is a natural generalization, to B_{h}-sets, of the problem of estimating the number of Sidon sets contained in $[n]$, proposed by Cameron and Erdős [3]. Second, we investigate the maximum size of a B_{h}-set contained in a random subset of $[n]$, in the spirit of [17, 18]. We present and discuss our results in detail in Section 2 .

Our notation is standard. Let us remark that we use the notation $a \ll b$ as shorthand for the statement $a / b \rightarrow 0$ as $n \rightarrow \infty$. We omit floor \rfloor and ceiling \rceil symbols when they are

[^0]The second author was partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (308509/2007-2 and $477203 / 2012-4$), NSF (DMS 1102086) and NUMEC/USP (Project MaCLinC/USP). The third author was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (No. 2013042157). The fourth author was supported by the NSF grants DMS 0800070, 1301698, and 1102086. The fifth author was partially supported by ERC Advanced Grant DMMCA and a Trinity College JRF.
not essential. We are mostly interested in large n; in our statements and inequalities we often tacitly assume that n is larger than a suitably large constant.

2. The main Results

Our main results are presented in two separate sections. We first discuss enumeration results and then we move on to probabilistic consequences.
2.1. A generalization of a problem of Cameron and Erdős. Let \mathcal{Z}_{n}^{h} be the family of $B_{h^{-}}$ sets contained in [n]. In 1990, Cameron and Erdős [3] proposed the problem of estimating $\left|\mathcal{Z}_{n}^{2}\right|$, that is, the number of Sidon sets contained in $[n]$. We investigate the problem of estimating $\left|\mathcal{Z}_{n}^{h}\right|$ for arbitrary $h \geq 2$. Recalling that $F_{h}(n)$ is the maximum size of a B_{h}-set contained in [n], one trivially has

$$
2^{F_{h}(n)} \leq\left|\mathcal{Z}_{n}^{h}\right| \leq \sum_{i=0}^{F_{h}(n)}\binom{n}{i} \leq\left(1+F_{h}(n)\right)\binom{n}{F_{h}(n)}
$$

Since $(1+o(1)) n^{1 / h} \leq F_{h}(n) \leq c_{h} n^{1 / h}$ for some constant c_{h}, we have

$$
\begin{equation*}
2^{(1+o(1)) n^{1 / h}} \leq\left|\mathcal{Z}_{n}^{h}\right| \leq n^{c_{h}^{\prime} n^{1 / h}} \tag{2}
\end{equation*}
$$

for some constant c_{h}^{\prime}. We improve the upper bound on $\left|\mathcal{Z}_{n}^{h}\right|$ in (2) as follows.
Theorem 2.1. For every $h \geq 2$, we have $\left|\mathcal{Z}_{n}^{h}\right| \leq 2^{C_{h} n^{1 / h}}$, where C_{h} is a constant that depends only on h.

The case $h=2$ in Theorem 2.1 was established in [17] and later given another proof in [23]. The proof of Theorem 2.1 is based on a refined version of the question. Let $\mathcal{Z}_{n}^{h}(t)$ be the family of B_{h}-sets contained in $[n]$ with t elements. Theorem 2.1 is obtained from the following result, which estimates $\left|\mathcal{Z}_{n}^{h}(t)\right|$ for all $t \geq n^{1 /(h+1)}(\log n)^{2}$.

Theorem 2.2. For every $h \geq 2$, there is a constant $c_{h}>0$ such that, for any $t \geq n^{1 /(h+1)}(\log n)^{2}$, we have

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \leq\left(\frac{c_{h} n}{t^{h}}\right)^{t} \tag{3}
\end{equation*}
$$

The derivation of Theorem 2.1 from Theorem 2.2 is given in Section 3 and Theorem 2.2 is proved in Section 4.2.

We now turn to lower bounds for $\left|\mathcal{Z}_{n}^{h}(t)\right|$. The bound in (4) in Proposition 2.3(i) below complements (3) in Theorem 2.2. On the other hand, Proposition 2.3 ($i i)$ shows that for small t, say, $t \ll n^{1 /(2 h-1)}$, the B_{h}-sets form a much larger proportion of the total number $\binom{n}{t}$ of t element sets (see (5)). Note that, for large t, namely, $t \geq n^{1 /(h+1)}(\log n)^{2}$, Theorem 2.2 tells us that this proportion is, very roughly speaking, of the order of $\left(n / t^{h}\right)\binom{n}{t}^{-1} \leq\left(n / t^{h}\right)^{t} /(n / t)^{t}=$ $t^{-(h-1) t}$.

Proposition 2.3. The following bounds hold for every $h \geq 2$.
(i) There is a constant $c_{h}^{\prime}>0$ such that

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \geq\left(\frac{c_{h}^{\prime} n}{t^{h}}\right)^{t} \tag{4}
\end{equation*}
$$

(ii) For any $\delta>0$, there exists an $\varepsilon>0$ such that, for any $t \leq \varepsilon n^{1 /(2 h-1)}$, we have

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \geq(1-\delta)^{t}\binom{n}{t} \tag{5}
\end{equation*}
$$

Let us compare the bounds we have for $\left|\mathcal{Z}_{n}^{h}(t)\right|$ as t varies. For $t \ll n^{1 /(2 h-1)}$, Proposition $2.3\left(\right.$ (ii) tells us that $\left|\mathcal{Z}_{n}^{h}(t)\right|$ is, up to a multiplicative factor of $(1-o(1))^{t}$, equal to the total number $\binom{n}{t}$ of t-element subsets of $[n]$. In this range, one might therefore say that B_{h}-sets are 'relatively abundant'. On the other hand, for $n^{1 /(h+1)}(\log n)^{2} \leq t \ll n^{1 / h}$, Theorem 2.2 and Proposition 2.3) (i) determine $\left|\mathcal{Z}_{n}^{h}(t)\right|$ up to a multiplicative factor of the form c^{t}, and we see that the probability that a random t-element subset of $[n]$ is a B_{h}-set is roughly of the form $t^{-(h-1) t}$. In this second range, B_{h}-sets are therefore scarcer. Finally, note that, by (1), if $t>h^{2} n^{1 / h}$, we have $\mathcal{Z}_{n}^{h}(t)=\emptyset$, that is, there are no B_{h}-sets in this third range.

Note that, in the discussion above, we did not cover the whole range of t. In particular, we left open the interval $n^{1 /(2 h-1)} \leq t \leq n^{1 /(h+1)}$. We believe that the hypothesis on t in Theorem 2.2 may be weakened to a bound comparable to the one in Proposition 2.3|(ii). We make this precise in Conjecture 7.1, given in Section 7. If true, this conjecture implies that, roughly speaking, there is a sudden change of behaviour around $t_{0}=n^{1 /(2 h-1)}$. Indeed, this conjecture implies that, for t considerably larger than this 'critical' value t_{0}, we have that $\left|\mathcal{Z}_{n}^{h}(t)\right|$ is of the form $\left(O\left(n / t^{h}\right)\right)^{t}$; this is in contrast to the fact that, as we have already seen, for t of smaller order than t_{0}, we have that $\left|\mathcal{Z}_{n}^{h}(t)\right|$ is of the form $(1-o(1))^{t}\binom{n}{t}=(\Theta(n / t))^{t}$.

We now consider a generalization of B_{h}-sets. For a set S of integers and an integer z, let

$$
\begin{equation*}
r_{S, h}(z)=\mid\left\{\left(a_{1}, \ldots, a_{h}\right) \in S^{h}: a_{1}+\cdots+a_{h}=z \text { and } a_{1} \leq \cdots \leq a_{h}\right\} \mid \tag{6}
\end{equation*}
$$

A set S is called a $B_{h}[g]$-set if $r_{S, h}(z) \leq g$ for all integers z. Observe that a $B_{h}[1]$-set is simply a B_{h}-set and hence this definition extends the notion of B_{h}-sets. Let $F_{h, g}(n)$ denote the maximum size of a $B_{h}[g]$-set contained in $[n]$. It is not hard to see that

$$
\begin{equation*}
(1+o(1)) n^{1 / h} \leq F_{h}(n) \leq F_{h, g}(n) \leq(g h \cdot h!)^{1 / h} n^{1 / h} . \tag{7}
\end{equation*}
$$

Our final result in this section gives a lower bound for the number $Z_{n}^{h, g}(t)$ of $B_{h}[g]$-sets of cardinality t contained in $[n]$. We shall see that a bound of the form (5) in Proposition 2.3)(ii) holds for $Z_{n}^{h, g}(t)$ even for t quite close to $n^{1 / h}$, at least if $g=g(n) \rightarrow \infty$. This is somewhat surprising, as $Z_{n}^{h, g}(t)=0$ if $t>g^{1 / h} h^{2} n^{1 / h}$ (see (7)). Furthermore, note that, therefore, there are basically only two 'regimes' for $B_{h}[g]$-sets if $g \rightarrow \infty$, in contrast to the case of B_{h}-sets, for which we have identified three distinct regimes (B_{h}-sets are relatively abundant for small t (see (5)), rather scarce for intermediate t (see (3)) and non-existent for large t (see (1))).

Theorem 2.4. Fix an integer $h \geq 2$ and a function $g=g(n)$. For every fixed $\delta>0$ and integer $1 \leq t \ll h^{-1}\left(n^{1-h!/ g}\right)^{1 / h}$, we have

$$
\begin{equation*}
(1-\delta)^{t}\binom{n}{t} \leq Z_{n}^{h, g}(t) \leq\binom{ n}{t} \tag{8}
\end{equation*}
$$

The proof of Theorem 2.4 is given in Section 6.
2.2. Probabilistic results. Let $[n]_{m}$ be an m-element subset of $[n]$ chosen uniformly at random. We are interested in estimating the cardinality of the largest B_{h}-sets contained in $[n]_{m}$.

Figure 1. The graphs of $b_{1}=b_{1}(a)$ and $b_{2}=b_{2}(a)$ from the statement of Theorem 2.6

Our bounds for the size of the families $\mathcal{Z}_{n}^{h}(t)$ presented in Section 2.1 will be useful in investigating this problem. It will be convenient to have the following definition.

Definition 2.5. For an integer $h \geq 2$ and a set R, let $F_{h}(R)$ denote the maximum size of a B_{h}-set contained in R.

The asymptotic behavior of the random variable $F_{2}\left([n]_{m}\right)$ was investigated in [17, 18]. Our goal here is to study $F_{h}\left([n]_{m}\right)$ for arbitrary $h \geq 3$. A standard deletion argument implies that, with probability tending to 1 as $n \rightarrow \infty$, or asymptotically almost surely (a.a.s. for short), we have

$$
F_{h}\left([n]_{m}\right)=(1+o(1)) m \quad \text { if } m=m(n) \ll n^{1 /(2 h-1)},
$$

where $o(1)$ denotes some function that tends to 0 as $n \rightarrow \infty$. On the other hand, if we apply the results of Schacht [24] and Conlon and Gowers [7] to B_{h}-sets, we have that a.a.s.

$$
F_{h}\left([n]_{m}\right)=o(m) \quad \text { if } m=m(n) \gg n^{1 /(2 h-1)} .
$$

Thus $n^{1 /(2 h-1)}$ is the threshold for the property that $F_{h}\left([n]_{m}\right)=o(m)$.
The following abridged version of our results gives us quite precise information on $F_{h}\left([n]_{m}\right)$ for a wide range of m and non-trivial but looser bounds for $n^{1 /(2 h-1)} \leq m \leq n^{h /(h+1)}$; see also Figure 1.

Theorem 2.6. Fix $h \geq 3$ and let $0 \leq a \leq 1$ be a fixed constant. Suppose $m=m(n)=$ $(1+o(1)) n^{a}$. Then a.a.s.

$$
\begin{equation*}
n^{b_{1}+o(1)} \leq F_{h}\left([n]_{m}\right) \leq n^{b_{2}+o(1)}, \tag{9}
\end{equation*}
$$

where

$$
b_{1}(a)= \begin{cases}a, & \text { for } 0 \leq a \leq 1 /(2 h-1) \tag{10}\\ 1 /(2 h-1), & \text { for } 1 /(2 h-1) \leq a \leq h /(2 h-1) \\ a / h, & \text { for } h /(2 h-1) \leq a \leq 1\end{cases}
$$

and

$$
b_{2}(a)= \begin{cases}a, & \text { for } 0 \leq a \leq 1 /(h+1) \tag{11}\\ 1 /(h+1), & \text { for } 1 /(h+1) \leq a \leq h /(h+1) \\ a / h, & \text { for } h /(h+1) \leq a \leq 1\end{cases}
$$

We prove the upper bounds in Theorem 2.6 (that is, (9) and (11)) in Sections 3. The lower bounds (that is, (9) and (10p) are proved in Section 5. Theorem 2.6 determines $b=b(a)$ for
which $F_{h}\left([n]_{m}\right)=n^{b+o(1)}$ when $m=(1+o(1)) n^{a}$ whenever $a \leq 1 /(2 h-1)$ or $a \geq h /(h+1)$. An interesting open question is the existence and determination of $b=b(a)$ such that $F_{h}\left([n]_{m}\right)=$ $n^{b+o(1)}$ for $1 /(2 h-1) \leq a \leq h /(h+1)$ (see Conjecture 7.2 in Section 7).

As in the previous section, we now move on to consider $B_{h}[g]$-sets.
Definition 2.7. For integers $h \geq 2$ and $g \geq 1$ and a set R, denote by $F_{h, g}(R)$ the maximum size of a $B_{h}[g]$-set contained in R.

As a natural extension of Theorem 2.6, we investigate the random variable $F_{h, g}\left([n]_{m}\right)$. Trivially, one has

$$
\begin{equation*}
F_{h, g}\left([n]_{m}\right) \leq \min \left\{m, F_{h, g}(n)\right\} \tag{12}
\end{equation*}
$$

Surprisingly, as our next result shows, one can obtain a matching lower bound to this trivial upper bound, up to an $n^{o(1)}$ factor, as long as one allows g to grow with n, however slowly.

Theorem 2.8. Let $h \geq 2$ be an integer and suppose $g(n) \rightarrow \infty$ as $n \rightarrow \infty$. Let $0 \leq a \leq 1$ be a fixed constant and suppose $m=m(n)=(1+o(1)) n^{a}$. Then a.a.s.

$$
\begin{equation*}
F_{h, g}\left([n]_{m}\right)=n^{b+o(1)} \tag{13}
\end{equation*}
$$

where

$$
b(a)= \begin{cases}a, & \text { for } 0 \leq a \leq 1 / h \tag{14}\\ 1 / h, & \text { for } 1 / h \leq a \leq 1\end{cases}
$$

The upper bound on $F_{h, g}\left([n]_{m}\right)$ contained in Theorem 2.8 follows from $\left.\sqrt{12}\right)$. The lower bound follows from the following more precise result, which is proved in Section 6 .

Theorem 2.9. Fix an integer $h \geq 2$ and a function $g=g(n)$. For every fixed $\varepsilon>0$ and $1 \leq$ $m \leq(\varepsilon / 3 h)\left(n^{1-h!/ g}\right)^{1 / h}$, we a.a.s. have $F_{h, g}\left([n]_{m}\right) \geq(1-\varepsilon) m$.

We remark that Theorem 2.9 above is closely related to Theorem 2.4 in the previous section. Indeed, we shall derive the latter from the former at the end of Section 6 .

3. Proof of Theorem 2.1 and proof of the upper bounds in Theorem 2.6

We first derive Theorem 2.1 from Theorem 2.2,
Proof of Theorem 2.1. The total number of subsets of $[n]$ having fewer than $n^{1 /(h+1)}(\log n)^{2}$ elements is $2^{o\left(n^{1 / h}\right)}$. Therefore, we may focus on $B_{h^{\prime}}$-sets of cardinality at least $n^{1 /(h+1)}(\log n)^{2}$. In particular, by Theorem 2.2,

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}\right| \leq 2^{o\left(n^{1 / h}\right)}+\sum_{t \geq n^{1 /(h+1)}(\log n)^{2}}\left(\frac{c_{h} n}{t^{h}}\right)^{t} \tag{15}
\end{equation*}
$$

Since the function $t \mapsto\left(c_{h} n / t^{h}\right)^{t}$ is maximized when $t=\left(c_{h} n\right)^{1 / h} / e$, it follows from 15 that, for an appropriate choice of the constant C_{h},

$$
\left|\mathcal{Z}_{n}^{h}\right| \leq 2^{o\left(n^{1 / h}\right)}+n \cdot \exp \left(\frac{h\left(c_{h} n\right)^{1 / h}}{e}\right) \leq 2^{C_{h} n^{1 / h}}
$$

We now turn to the proof of the upper bound on $F_{h}\left([n]_{m}\right)$ contained in Theorem 2.6. We start with the following easy remark.

Remark 3.1. At times, it will be convenient to work with the binomial random set $[n]_{p}$, which is a random subset of $[n]$, with each element of $[n]$ included independently with probability p. The models $[n]_{m}$ and $[n]_{p}$, with $p=m / n$, are fairly similar: If some property holds for $[n]_{p}$ with probability $1-o(1 / \sqrt{p n})$ then the same property holds a.a.s. for $[n]_{m}$ (this follows from Pittel's inequality; see [13, p. 17]).

The following theorem is a direct corollary of Theorem 2.2.
Theorem 3.2. There is an absolute constant C such that for every $p \geq n^{-1 /(h+1)}(\log n)^{2 h}$, a.a.s.,

$$
F_{h}\left([n]_{p}\right) \leq C(p n)^{1 / h} .
$$

Moreover, for some absolute constant $c>0$, the probability that the inequality above fails is at most $\exp \left(-c(p n)^{1 / h}\right)$.

To derive Theorem 3.2 from Theorem 2.2, it suffices to use the following proposition.
Proposition 3.3. The expected number of B_{h}-sets of cardinality t in $[n]_{p}$ is $p^{t}\left|\mathcal{Z}_{n}^{h}(t)\right|$. In particular,

$$
\mathbf{P}\left[F_{h}\left([n]_{p}\right) \geq t\right] \leq p^{t}\left|\mathcal{Z}_{n}^{h}(t)\right| .
$$

We now prove the upper bound on $F_{h}\left([n]_{m}\right)$ given in Theorem 2.6 (see (9) and (11)). Let us first recall that Remark 3.1 links the binomial random set $[n]_{p}$, appearing in Theorem 3.2 , to the random set $[n]_{m}$ that appears in Theorem [2.6. In what follows, we establish (9) and (11) in Theorem 2.6 using Theorem 3.2. We analyse three ranges of a separately.
(i) $0 \leq a \leq 1 /(h+1)$: From the trivial bound $F_{h}\left([n]_{m}\right) \leq m$, we see that we may take $b_{2}(a)=a$ in this range of a.
(ii) $1 /(h+1)<a \leq h /(h+1)$: It is clear that, in probability, $F_{h}\left([n]_{m}\right)$ is non-decreasing in m. Hence, $b_{2}(a)$ may be taken to be non-decreasing in a as well. Since, as we show next, we may take $b_{2}(h /(h+1))=1 /(h+1)$, this monotonicity lets us take $b_{2}(a)=1 /(h+1)$ in this range of a.
(iii) $h /(h+1)<a \leq 1$: In this range, $b_{2}(a)=a / h$ follows from Theorem 3.2. Indeed, if $p \geq n^{-1 /(h+1)}(\log n)^{2 h}$, then with probability at least $1-\exp \left(-c(p n)^{1 / h}\right) \geq 1-o(1 / \sqrt{p n})$ we have $F_{h}\left([n]_{p}\right) \leq C(p n)^{1 / h}$ for some absolute constant $C>0$. Remark 3.1 implies that, a.a.s., $F_{h}\left([n]_{m}\right) \leq C m^{1 / 3}$ for all $m \geq n^{h /(h+1)}(\log n)^{2 h}$, giving that we may take $b_{2}(a)=a / 3$ for $a>h /(h+1)$, as claimed.

4. Upper bounds for the number of B_{h}-SETS of a given cardinality

We prove Theorem 2.2 in this section. We follow a strategy that may be described very roughly as follows. Suppose a B_{h}-set $S \subset[n]$ of cardinality s is given and one would like to extend it to a larger B_{h}-set of cardinality s^{\prime}. We shall show that if s is not too small, then the number of such extensions is very small. To prove Theorem 2.2, we shall apply this fact iteratively, considering a sequence of cardinalities $s<s^{\prime}<s^{\prime \prime}<\ldots$.
4.1. Bounding the number of extensions of B_{h}-sets. We use a graph-based approach to bounding the number of extensions of a large B_{h}-set to a larger B_{h}-set. This approach is
inspired by the work of Kleitman and Winston [16] and Kleitman and Wilson [15]. We start with the following simple observation. If two distinct elements $x, y \in[n] \backslash S$ satisfy

$$
\begin{gather*}
x+a_{1}+\cdots+a_{h-1}=y+b_{1}+\cdots+b_{h-1} \\
\text { for some }\left\{a_{1}, \ldots, a_{h-1}\right\},\left\{b_{1}, \ldots, b_{h-1}\right\} \in\binom{S}{h-1}, \tag{16}
\end{gather*}
$$

then $S \cup\{x, y\}$ is clearly not a B_{h}-set. This motivates our next definition.
Definition 4.1. The collision graph CG_{S} is a graph on the vertex set $[n] \backslash S$ whose edges are all pairs of distinct elements $x, y \in[n] \backslash S$ that satisfy (16).

Clearly, by the construction of CG_{S}, any set I of elements of $[n] \backslash S$ that extends S to a larger B_{h}-set $S \cup I$ must be an independent set in CG_{S}.

One of our main tools is the following lemma, implicit in the work of Kleitman and Winston [16], which provides an upper bound on the number of independent sets in graphs that have many edges in each sufficiently large vertex subset (see 181). Lemma 4.2 in the version presented below is stated and proved in [17, 18], where it is used to bound the number of Sidon subsets of $[n]$. For other applications of this lemma to problems in additive combinatorics, we refer the reader to [1].

Lemma 4.2. Let δ and $\beta>0$ and $q \in \mathbb{N}$ be numbers satisfying

$$
\begin{equation*}
e^{\beta q} \delta>1 \tag{17}
\end{equation*}
$$

Suppose that $G=(V, E)$ is a graph satisfying

$$
\begin{equation*}
e_{G}(A) \geq \beta|A|^{2} \text { for all } A \subset V \text { with }|A| \geq \delta|V| \text {. } \tag{18}
\end{equation*}
$$

Then, for every $m \geq 1$, there are at most

$$
\begin{equation*}
\binom{|V|}{q}\binom{\delta|V|}{m} \tag{19}
\end{equation*}
$$

independent sets in G of size $q+m$.
Remark 4.3. When we apply Lemma 4.2 to CG_{S}, we shall take $m \gg q$ to take advantage of the upper bound 19). In condition (18), there is a trade-off between β (larger is better) and δ (smaller is better) which needs to be optimized.

We wish to show that CG_{S} satisfies (18) with good parameters β and δ. To that end, we shall make use of two auxiliary graphs, which we now define.

Definition 4.4. Let $\widetilde{\mathrm{CG}}_{S}$ be a multigraph version of CG_{S}, where the multiplicity of a pair $\{x, y\}$ of distinct $x, y \in[n] \backslash S$ is given by the number of pairs $\left(\left\{a_{1}, \ldots, a_{h-1}\right\},\left\{b_{1}, \ldots, b_{h-1}\right\}\right) \in\binom{S}{h-1}^{2}$ that satisfy (16).

It will be convenient for us to work with a certain subgraph of $\widetilde{\mathrm{CG}}_{S}$ that we define as follows. For a set S with s elements, let

$$
\begin{equation*}
S_{1}, \ldots, S_{h-1} \tag{20}
\end{equation*}
$$

be a fixed partition of S into sets with cardinalities that differ by at most one. Let $\widetilde{\mathrm{CG}}_{S}^{\prime}$ be the subgraph of $\widetilde{\mathrm{CG}}_{S}$ in which the multiplicity of a pair $x, y \in[n] \backslash S$ is the number of pairs
$\left(\left\{a_{1}, \ldots, a_{h-1}\right\},\left\{b_{1}, \ldots, b_{h-1}\right\}\right) \in\binom{S}{h-1}^{2}$ that satisfy (16) and, moreover, are such that $a_{i}, b_{i} \in$ S_{i} for each $i \in[h-1]$.

Lemma 4.5. For every B_{h}-set S with s elements and every $A \subset[n] \backslash S$ with $|A| \geq h^{2 h} n / s^{h-1}$, we have

$$
\begin{equation*}
e_{\widetilde{\mathrm{CG}}_{S}}(A) \geq e_{\widetilde{\mathrm{CG}}_{S}^{\prime}}^{\prime}(A) \geq \frac{s^{2 h-2}}{h^{2 h} n}|A|^{2}, \tag{21}
\end{equation*}
$$

where the edges in $\widetilde{\mathrm{CG}}_{S}$ and $\widetilde{\mathrm{CG}}_{S}^{\prime}$ are counted with multiplicity.

The proof of Lemma 4.5 will be given in Section 4.3. In view of Lemma 4.5, if the maximal multiplicity of an edge in $\widetilde{\mathrm{CG}}_{S}^{\prime}$ is at most r, then the graph CG_{S} satisfies the conditions of Lemma 4.2 with $\beta=s^{2 h-2} / h^{2 h} r n$ and $\delta=h^{2 h} / s^{h-1}$. Consequently, we are interested in bounding the multiplicity of the edges of $\widetilde{\mathrm{CG}}_{S}^{\prime}$.

Proposition 4.6. For every B_{h}-set S of cardinality s, the maximal multiplicity of an edge in $\widetilde{\mathrm{CG}}_{S}^{\prime}$ does not exceed s^{h-2}.

We postpone the proof of Proposition 4.6 to Section 4.4. The following is an immediate corollary of Lemma 4.5 and Proposition 4.6 .

Corollary 4.7. If S is a B_{h}-set with s elements, then for every $A \subset[n] \backslash S$ with $|A| \geq h^{2 h} n / s^{h-1}$,

$$
e_{\mathrm{CG}_{S}}(A) \geq \frac{s^{h}}{h^{2 h} n}|A|^{2}
$$

4.2. Proof of Theorem 2.2. The case $h=2$ of Theorem 2.2 is proved in 17 and we therefore restrict ourselves to $h \geq 3$ here. We shall in fact prove the following: for every $h \geq 3$ and $t \geq h^{2} n^{1 /(h+1)}(\log n)^{1+1 /(h+1)}$,

$$
\left|\mathcal{Z}_{n}^{h}(t)\right| \leq\left(\frac{2^{2 h} e^{6} h^{2 h} n}{t^{h}}\right)^{t}
$$

In view of (1), we have $\mathcal{Z}_{n}^{h}(t)=0$ for $t>h^{2} n^{1 / h}$. Hence we assume

$$
\begin{equation*}
t \leq h^{2} n^{1 / h} \tag{22}
\end{equation*}
$$

that is, $h^{2} n^{1 /(h+1)}(\log n)^{1+1 /(h+1)} \leq t \leq h^{2} n^{1 / h}$. Let $s_{0}=h^{2}(n \log n)^{1 /(h+1)}$ and let K be the largest integer satisfying $t 2^{-K} \geq 2 s_{0}$. We define three sequences $\left(s_{k}\right)_{0 \leq k \leq K},\left(q_{k}\right)_{0 \leq k \leq K}$ and $\left(m_{k}\right)_{0 \leq k \leq K}$ as follows. We let $q_{0}=s_{0} / 2$ and $m_{0}=t 2^{-K}-s_{0}-q_{0}$. Moreover, we let $s_{1}=t 2^{-K} \geq$ $2 s_{0}, q_{1}=q_{0} / 2^{h}$ and $m_{1}=t 2^{-K+1}-s_{1}-q_{1}$. For $k=2, \ldots, K$, we let $s_{k}=2 s_{k-1}=t 2^{-K+k-1}$, $q_{k}=q_{k-1} / 2^{h}=q_{0} 2^{-h k}$ and $m_{k}=t 2^{-K+k}-s_{k}-q_{k}$.

We will bound the number of sequences $S_{0} \subset \cdots \subset S_{K} \subset S_{K+1}$ of B_{h}-sets with $\left|S_{K+1}\right|=t$ and $\left|S_{k}\right|=s_{k}$ for all $k=0, \ldots, K$, from which a bound on $\left|\mathcal{Z}_{n}^{h}(t)\right|$ will easily follow. Although we will only use the trivial bound $\binom{n}{s_{0}}$ for the number of choices for S_{0}, we will then employ Lemma 4.2 to obtain a non-trivial bound on the number of extensions of S_{k} to S_{k+1} for all k.

Let us now estimate the number of extensions of a B_{h}-set S_{k} to a larger B_{h}-set S_{k+1} for some $k=0, \ldots, K$. By Corollary 4.7, the graph $\mathrm{CG}_{S_{k}}$ is such that for all $A \subset[n] \backslash S_{k}$ with $|A| \geq h^{2 h} n / s_{k}^{h-1}$,

$$
e_{\mathrm{CG}_{S_{k}}}(A) \geq \beta_{k}|A|^{2}, \quad \text { where } \quad \beta_{k}=\frac{s_{k}^{h}}{h^{2 h} n}
$$

Let $\delta_{k}=h^{2 h} / s_{k}^{h-1} \geq 1 / n$ and observe that

$$
e^{\beta_{k} q_{k}}=\exp \left(\frac{s_{k}^{h}}{h^{2 h} n} \cdot \frac{q_{0}}{2^{h k}}\right) \geq \exp \left(\frac{\left(2^{k} s_{0}\right)^{h} \cdot s_{0}}{h^{2 h} n \cdot 2^{h k+1}}\right) \geq \exp \left(\frac{s_{0}^{h+1}}{2 h^{2 h} n}\right) \geq n \geq \delta_{k}^{-1} .
$$

$$
\binom{\delta_{0} n}{m_{0}} \leq\binom{\delta_{0} n}{3 s_{0}} \quad \text { and } \quad\binom{\delta_{k} n}{m_{k}} \leq\binom{\delta_{k} n}{s_{k}}
$$

${ }_{237}$ for all $1 \leq k \leq K$. Indeed, we have that $m_{0}=s_{1}-s_{0}-q_{0} \leq 4 s_{0}-s_{0} \leq 3 s_{0}$ and also $3 s_{0} \leq \frac{\delta_{0} n}{2}$ and that for all $1 \leq k \leq K, m_{k} \leq s_{k} \leq \frac{\delta_{k} n}{2}$ as

$$
\frac{s_{k}}{\delta_{k}}=\frac{s_{k}^{h}}{h^{2 h}} \leq \frac{s_{K}^{h}}{h^{2 h}}=\frac{(t / 2)^{h}}{h^{2 h}} \leq \frac{n}{2^{h}}
$$

where the last inequality follows from our assumption on t. Hence,

$$
\binom{n}{q_{0}}\binom{\delta_{0} n}{m_{0}} \leq\binom{ n}{q_{0}}\binom{\delta_{0} n}{3 s_{0}} \leq\binom{ n}{q_{0}}\binom{n}{3 s_{0}} \leq n^{q_{0}} n^{3 s_{0}}
$$

and for all $1 \leq k \leq K$

$$
\binom{n}{q_{k}}\binom{\delta_{k} n}{m_{k}} \leq\binom{ n}{q_{k}}\binom{\delta_{k} n}{s_{k}} \leq n^{q_{k}}\left(\frac{e \delta_{k} n}{s_{k}}\right)^{s_{k}} \leq n^{q_{k}}\left(\frac{e h^{2 h} n}{s_{k}^{h}}\right)^{s_{k}} .
$$

It follows that

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \leq\binom{ n}{s_{0}} \prod_{k=0}^{K}\binom{n}{q_{k}}\binom{\delta_{k} n}{m_{k}} \leq n^{4 s_{0}+\sum_{k=0}^{K} q_{k}} \prod_{k=1}^{K}\left(\frac{e h^{2 h} n}{s_{k}^{h}}\right)^{s_{k}} \tag{23}
\end{equation*}
$$

242 Finally, since

$$
\sum_{k=0}^{K} q_{k}=q_{0} \sum_{k=0}^{K} 2^{-h k} \leq 2 q_{0}=s_{0} \leq \frac{t}{\log n}
$$

243 and

$$
\prod_{k=1}^{K}\left(\frac{e h^{2 h} n}{s_{k}^{h}}\right)^{s_{k}} \leq \prod_{k=1}^{K+1}\left(\frac{e h^{2 h} n}{\left(t 2^{-k}\right)^{h}}\right)^{t 2^{-k}} \leq\left[\left(\frac{e h^{2 h} n}{t^{h}}\right)^{\sum_{k \geq 1} 2^{-k}} \cdot 2^{h \sum_{k \geq 1} k 2^{-k}}\right]^{t} \leq\left(\frac{2^{2 h} e h^{2 h} n}{t^{h}}\right)^{t}
$$

Theorem 2.2 follows from (23).
4.3. Proof of Lemma 4.5. Let S be a B_{h}-set with s elements and let S_{1}, \ldots, S_{h-1} be the partition (20) of S from the definition of $\widetilde{\mathrm{CG}}_{S}^{\prime}$. Let $A \subset[n] \backslash S$ be an arbitrary subset with $|A| \geq h^{2 h} n / s^{h-1}$. Consider the auxiliary bipartite graph Γ defined as follows. The vertex classes of Γ are A and a disjoint copy of $[h n]$. The edge set of Γ is defined as

$$
E(\Gamma)=\left\{(x, u) \in A \times[h n]: u=x+a_{1}+\cdots+a_{h-1} \text { for some } a_{1} \in S_{1}, \ldots, a_{h-1} \in S_{h-1}\right\} .
$$

Note that, because S is a B_{h}-set, for fixed x and u, there is at most one solution to $u=$ $x+a_{1}+\cdots+a_{h-1}$ with $a_{1} \in S_{1}, \ldots a_{h-1} \in S_{h-1}$. We will now argue that the multiplicity of a pair $\{x, y\} \in\binom{A}{2}$ in the multigraph $\widetilde{\mathrm{CG}}_{S}^{\prime}$ is the number of paths of length two connecting x to y in Γ. Indeed, there is a bijection between pairs $\left(\left\{a_{1}, \ldots, a_{h-1}\right\},\left\{b_{1}, \ldots, b_{h-1}\right\}\right) \in\binom{S}{h-1}^{2}$
with $a_{i}, b_{i} \in S_{i}$ for all $i \in[h-1]$ that satisfy (16) and paths xuy in Γ, where

$$
u=x+a_{1}+\cdots+a_{h-1}=y+b_{1}+\cdots+b_{h-1}
$$

On the other hand, since $|A| \geq h^{2 h} n / s^{h-1}$, we may assume that $s \geq h^{2}$ and hence,

$$
e(\Gamma)=\sum_{x \in A} \operatorname{deg}_{\Gamma}(x)=|A|\left|S_{1}\right| \ldots\left|S_{h-1}\right| \geq\left(\left\lfloor\frac{s}{h-1}\right\rfloor\right)^{h-1}|A| \geq\left(\frac{s}{h}\right)^{h-1}|A|
$$

It follows that $e(\Gamma) \geq h^{h} n$ and thus,

$$
e_{\widetilde{\mathrm{CG}}_{S}^{\prime}}^{\prime}(A) \geq h n\binom{e(\Gamma) / h n}{2} \geq e(\Gamma)\left(\frac{e(\Gamma)-h n}{2 h n}\right) \geq \frac{e(\Gamma)^{2}}{h n}\left(\frac{h^{h}-h}{2 h^{h}}\right) \geq \frac{e(\Gamma)^{2}}{3 h n} \geq \frac{s^{2 h-2}}{h^{2 h} n}|A|^{2}
$$

Otherwise, there is a $u \in N_{i}^{i+1}(z) \cap N_{i}^{i+1}(y)$. If $N_{i+1}^{h}\left(u^{\prime}\right) \cap N_{1}^{h}(y)=\emptyset$ for all $u^{\prime} \in N_{i}^{i+1}(z) \backslash\{u\}$, then

$$
\left|N_{i}^{h}(z) \cap N_{1}^{h}(y)\right|=\left|N_{i+1}^{h}(u) \cap N_{1}^{h}(y)\right| \leq\left|N_{i+1}^{h}(u)\right| \leq\left|S_{i+1}\right| \cdots\left|S_{h-1}\right| \leq s^{h-i-1}
$$

Consequently, $e_{\widetilde{\mathrm{CG}}_{S}^{\prime}}(A)$ is the number of paths of length two in Γ containing two vertices in the class A. By Jensen's inequality applied to the convex function $f(\alpha)=\binom{\alpha}{2}=\alpha(\alpha-1) / 2$,

$$
e_{\widetilde{\mathrm{CG}}_{S}^{\prime}}(A) \geq \sum_{u \in[h n]}\binom{\operatorname{deg}_{\Gamma}(u)}{2} \geq h n\binom{e(\Gamma) / h n}{2}
$$

This concludes the proof of Lemma 4.5.
4.4. Proof of Proposition 4.6, Let S be a B_{h}-set of cardinality s and let S_{1}, \ldots, S_{h-1} be the partition (20) of S from the definition of $\widetilde{\mathrm{CG}}_{S}^{\prime}$. For each pair $i, j \in[h]$ with $i \leq j$ and each $x \in \mathbb{Z}$, let

$$
N_{i}^{j}(x)=\left\{x+a_{i}+\cdots+a_{j-1}: a_{i} \in S_{i}, \ldots, a_{j-1} \in S_{j-1}\right\},
$$

where $N_{i}^{i}(x)=\{x\}$, and note that (since S is a B_{h}-set) the multiplicity of an edge $\{x, y\}$ in the multigraph $\widetilde{\mathrm{CG}}_{S}^{\prime}$ is $\left|N_{1}^{h}(x) \cap N_{1}^{h}(y)\right|$. The following claim implies the postulated bound on the multiplicity of $\{x, y\}$, as trivially $x \in N_{1}^{1}(x) \backslash N_{1}^{1}(y)$.

Claim 4.8. Fix x and $y \in \mathbb{Z}$ with $x \neq y$. For every $i \in[h]$, and every $z \in N_{1}^{i}(x) \backslash N_{1}^{i}(y)$,

$$
\begin{equation*}
\left|N_{i}^{h}(z) \cap N_{1}^{h}(y)\right| \leq s^{h-i-1} \tag{24}
\end{equation*}
$$

Proof. We prove the claim by induction on $h-i$. If $i=h$, then there is nothing to prove as $N_{h}^{h}(z)=\{z\}$ is disjoint from $N_{1}^{h}(y)$. Assume then that $i<h$ and let z be an arbitrary element of $N_{1}^{i}(x) \backslash N_{1}^{i}(y)$. If $N_{i}^{i+1}(z) \cap N_{1}^{i+1}(y)=\emptyset$, then, as $N_{i}^{i+1}(z) \subset N_{1}^{i+1}(x)$, the induction assumption implies that

$$
\begin{aligned}
\left|N_{i}^{h}(z) \cap N_{1}^{h}(y)\right| & \leq \sum_{u \in N_{i}^{i+1}(z)}\left|N_{i+1}^{h}(u) \cap N_{1}^{h}(y)\right| \\
& \leq\left|N_{i}^{i+1}(z)\right| \cdot s^{h-i-2}=\left|S_{i}\right| \cdot s^{h-i-2} \leq s^{h-i-1}
\end{aligned}
$$

Hence, we may assume that there is a $u^{\prime} \in N_{i}^{i+1}(z) \backslash\{u\}$ such that $N_{i+1}^{h}\left(u^{\prime}\right) \cap N_{1}^{h}(y) \neq \emptyset$. In this case, let $j \in\{i, \ldots, h-1\}$ be the smallest index such that $N_{i+1}^{j+1}\left(u^{\prime}\right) \cap N_{1}^{j+1}(y) \neq \emptyset$ and let $w \in N_{i+1}^{j+1}\left(u^{\prime}\right) \cap N_{1}^{j+1}(y)$ be arbitrary. Moreover, let $k \in\{1, \ldots, i\}$ be the largest index such
that there is a $w^{\prime} \in N_{1}^{k}(y)$ satisfying $u \in N_{k}^{i}\left(w^{\prime}\right)$ and $w \in N_{k}^{j+1}\left(w^{\prime}\right)$. Observe that

$$
\begin{aligned}
u & =w^{\prime}+a_{k}+\cdots+a_{i} \\
w & =z+b_{i}+\cdots+b_{j} \\
w & =w^{\prime}+c_{k}+\cdots+c_{j} \\
u & =z+d
\end{aligned}
$$

for some $a_{k} \in S_{k}, \ldots, a_{i} \in S_{i}$, for some $b_{i} \in S_{i}, \ldots, b_{j} \in S_{j}$, for some $c_{k} \in S_{k}, \ldots, c_{j} \in S_{j}$, for some $d \in S_{i}$.

Moreover, the minimality of j implies that $b_{j} \neq c_{j}$ and the maximality of k implies that $a_{k} \neq c_{k}$. Also, since $b_{i}=u^{\prime}-z$ and $u^{\prime} \neq u$, then $b_{i} \neq d$. It follows that

$$
a_{k}+\cdots+a_{i}+b_{i}+\cdots+b_{j}=c_{k}+\cdots+c_{j}+d .
$$

Since S is a B_{h}-set and $j-k+2 \leq h$, we must have

$$
\begin{equation*}
\left\{a_{k}, \ldots, a_{i}, b_{i}, \ldots, b_{j}\right\}=\left\{c_{k}, \ldots, c_{j}, d\right\} . \tag{25}
\end{equation*}
$$

Recall that the sets S_{1}, \ldots, S_{h-1} are pairwise disjoint. If $j>i$, then $b_{j} \neq c_{j}$ are the only elements of S_{j} in (25) and hence (25) cannot hold. If $k=j=i$, then (25) cannot hold as $b_{i} \notin\left\{c_{i}, d\right\}$. Therefore, it must be that $k<i$. But in this case, as $a_{k} \neq c_{k}$ are the only elements of S_{k}, equality again cannot hold. This contradiction completes the proof of the claim.

5. Lower bounds

In this section, we establish the lower bounds in Theorem 2.6 and prove Proposition 2.3. For conciseness, we shall be somewhat sketchy when dealing with routine arguments.
First, we show that a simple deletion argument (given in Lemma 5.1 below) yields that if $m \ll n^{1 /(2 h-1)}$, then $F_{h}\left([n]_{m}\right)=(1-o(1)) m$. This immediately implies that in Theorem 2.6, for $0 \leq a \leq 1 /(2 h-1)$, one may take $b_{1}(a)=a$ (see (9) and (10)). Since $F_{3}\left([n]_{m}\right)$ is non-decreasing in probability with respect to m, for $a>1 /(2 h-1)$, we may take $b_{1}(a)=b_{1}(1 /(2 h-1))=$ $1 /(2 h-1)$. Moreover, as an easy corollary of Lemma 5.1, we will also derive Proposition 2.3)(ii),

In the second part of this section, following the strategy of [17, 18], for every $t=o\left(n^{1 / h}\right)$, we will describe a deterministic construction of a large subfamily of $\mathcal{Z}_{n}^{h}(t)$. The existence of such a subfamily will immediately imply Proposition 2.3)(i), Moreover, we shall show that if $1 \ll$ $m \leq n$, then a.a.s. the set $[n]_{m}$ contains a B_{h}-set, with $\Omega\left(m^{1 / h}\right)$ elements, from the constructed subfamily. This yields that in Theorem 2.6, we may take $b_{1}(a)=a / h$ for all $0 \leq a \leq 1$. Note that, in the range $1 /(2 h-1) \leq a \leq h /(2 h-1)$, this is superseded by the bound obtained in the first part, that is, $b_{1}(a)=1 /(2 h-1)$.

Lemma 5.1. If $1 \leq m=o\left(n^{1 /(2 h-1)}\right)$, then we a.a.s. have $m \geq F_{h}\left([n]_{m}\right) \geq(1-o(1)) m$.
Proof. Let $1 \leq m \ll n^{1 /(2 h-1)}$ and let X be the random variable that counts the number of solutions to

$$
\begin{equation*}
a_{1}+\cdots+a_{h}=b_{1}+\cdots+b_{h} \quad \text { with } \quad\left\{a_{1}, \ldots, a_{h}\right\} \neq\left\{b_{1}, \ldots, b_{h}\right\} \tag{26}
\end{equation*}
$$ and $a_{i}, b_{i} \in[n]_{m}$ for all $i \in[h]$. Let $p=m / n$. It follows from the linearity of expectation that

$$
\mathbf{E}[X]=O\left(\sum_{k=2}^{2 h-1} p^{k+1} n^{k}\right)=O\left(p^{2 h} n^{2 h-1}\right)=o(m) .
$$

Hence, by Markov's inequality, we a.a.s. have $X=o(m)$. Since deleting from $[n]_{m}$ one element from the set $\left\{a_{1}, b_{1}, \ldots, a_{h}, b_{h}\right\}$ for each of the X solutions to (26) yields a B_{h}-set, the lemma follows.

Proof of Proposition 2. W) (ii). Fix a constant $\delta>0$. Choose $\beta>0$ small enough so that ($1-$ $2 \beta)(1-\delta / 3) \geq 1-\delta$ and $\binom{(1+\beta) t}{\beta t} \leq(1+\delta / 3)^{t}$ for all t. Let $\varepsilon>0$ be a small constant. Assume that $t \leq \varepsilon n^{1 /(2 h-1)}$. Lemma 5.1 with $m=(1+\beta) t$ implies that if ε is sufficiently small, then $F_{h}\left([n]_{m}\right) \geq t$ with probability at least $1-\beta$. It follows that, for large enough n, we have

$$
\begin{align*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \geq & (1-\beta)\binom{n}{(1+\beta) t}\binom{n}{\beta t}^{-1} \geq(1-2 \beta)\binom{n}{(1+\beta) t}\binom{n-t}{\beta t}^{-1} \\
& =(1-2 \beta)\binom{n}{t}\binom{(1+\beta) t}{\beta t}^{-1} \geq(1-2 \beta)(1-\delta / 3)^{t}\binom{n}{t} \geq(1-\delta)^{t}\binom{n}{t}, \tag{27}
\end{align*}
$$

as required.
In order to construct a large family of B_{h}-sets for larger t, we will use the following theorem of Bose and Chowla [5] (with the statement adapted for our purposes).

Theorem 5.2. For every integer $h \geq 2$, there is an integer m_{h} such that for all $m \geq m_{h}$, there exists a B_{h}-set $Y \subset \mathbb{Z}_{m}$ with $|Y|=\Omega\left(m^{1 / h}\right)$.

Let us now fix some n and m with $n \geq m$ such that, letting $p=m / n$, the numbers $1 /(h p)$ and $p n / h$ are integers. Theorem 5.2 implies the existence of a B_{h}-set $Y \subset \mathbb{Z}_{m}$ with $|Y|=\Omega\left(m^{1 / h}\right)$, provided that m is sufficiently large. We will show that there is a subset $U \subset[n]$ and a projection $\pi: U \subset[n] \rightarrow \mathbb{Z}_{m}$ such that
(a) any set $S \subset \pi^{-1}(Y)$ with $\left|S \cap \pi^{-1}(x)\right| \leq 1$ for all $x \in Y$ is a B_{h}-set;
(b) $\left|\pi^{-1}(x)\right| \geq 1 /(h p)$ for $s=\Omega(|Y|)$ elements $x \in Y$.

We first show that the existence of π and U satisfying conditions (a) and (b) above implies Proposition 2.3)(i).

Proof of Proposition 2. W) (i). Note that, choosing c_{h}^{\prime} appropriately small (see (4)), we may suppose that $t \leq \varepsilon n^{1 / h}$ for any given $\varepsilon>0$. Therefore, let us assume that $t \leq \varepsilon n^{1 / h}$ for a suitably small constant ε for our estimates below to hold. Choose $m=O\left(t^{h}\right) \leq n$ so that $s=\Omega(|Y|)=\Omega\left(m^{1 / h}\right)$ in condition (b) is at least t. Let $Y^{\prime} \subset Y$ be a set of t numbers x such that $\left|\pi^{-1}(x)\right| \geq 1 /(h p)$ for each $x \in Y^{\prime}$. Condition (a) implies that each set $T \subset \pi^{-1}\left(Y^{\prime}\right) \subset[n]$ satisfying $\left|T \cap \pi^{-1}(x)\right|=1$ for every $x \in Y^{\prime}$ is a B_{h}-set. Since $m=O\left(t^{h}\right)$, we have $\left|\pi^{-1}(x)\right| \geq 1 /(h p)=n /(h m)=\Omega\left(n / t^{h}\right)$, and hence there are $\left(\Omega\left(n / t^{h}\right)\right)^{t}$ such sets T, proving the bound in (4).

Next, we show that the existence of π and U as above also yields the claimed lower bound in Theorem 2.6,

Lemma 5.3. For any $1 \ll m \leq n$, we a.a.s. have $F_{h}\left([n]_{m}\right)=\Omega\left(m^{1 / h}\right)$.
Proof. In the view of Lemma 5.1, we may assume that $m \gg n^{1 /(2 h)}$. It will be convenient for us to use the model $[n]_{p}$ with $p=m / n$ rather than $[n]_{m}$ (recall Remark 3.1). Without loss of generality we assume that n is sufficiently large and that $1 /(h p), p n, p n / h \in \mathbb{N}$. Fix some π and U satisfying conditions (a) and (b) above. Define a set S by selecting the smallest element
from $[n]_{p} \cap \pi^{-1}(x)$ for each $x \in Y$, whenever this set is non-empty. By (a), the set S is a B_{h}-set. It suffices to show that a.a.s. $|S|=\Omega\left(m^{1 / h}\right)$.

Using (b) let $Y^{\prime} \subset Y$ be a family of $s=\Omega(|Y|)=\Omega\left(m^{1 / h}\right)$ elements $x \in Y$ satisfying $\left|\pi^{-1}(x)\right| \geq 1 /(h p)$. For any $x \in Y^{\prime}$, the probability that $[n]_{p} \cap \pi^{-1}(x)=\emptyset$ is $q=(1-p)^{\left|\pi^{-1}(x)\right| \leq}$ $(1-p)^{1 /(h p)} \leq e^{-p /(h p)}=e^{-1 / h}<1$. It follows from the fact that the sets $\left\{\pi^{-1}(x)\right\}_{x \in Y^{\prime}}$ are disjoint that the number of elements $x \in Y^{\prime}$ for which $[n]_{p} \cap \pi^{-1}(x)=\emptyset$ is a random variable following the binomial distribution with parameters $\left|Y^{\prime}\right|$ and $q<1$. Consequently, by the Chernoff's bound,

$$
\mathbf{P}\left[\left|\left\{x \in Y:[n]_{p} \cap \pi^{-1}(x) \neq \emptyset\right\}\right|<\frac{1-q}{2}\left|Y^{\prime}\right|\right] \leq \exp \{-c|Y|\}
$$

for some constant $c>0$. Therefore, with probability at least $1-\exp \left(-\Omega\left(m^{1 / h}\right)\right)$ there are at least $\frac{1-q}{2}\left|Y^{\prime}\right|$ elements $x \in Y$ which satisfy $[n]_{p} \cap \pi^{-1}(x) \neq \emptyset$, thus proving that a.a.s. $F_{h}\left([n]_{m}\right) \geq \Omega\left(m^{1 / h}\right)$.

Finally, we define the projection π and its domain $U \subset[n]$. We first partition $[h n]$ into intervals

$$
I_{j}=\left[\frac{j}{p}+1, \frac{j+1}{p}\right], \quad j=0, \ldots, h p n-1
$$

Furthermore, we subdivide each of the intervals above into h subintervals of equal lengths, namely,

$$
\begin{equation*}
I_{j, k}=\left[\frac{j}{p}+1+\frac{k}{h p}, \frac{j}{p}+\frac{k+1}{h p}\right], \quad j=0, \ldots, h p n-1 \text { and } k=0, \ldots, h-1 . \tag{28}
\end{equation*}
$$

The domain of π is defined as

$$
\begin{equation*}
U=\bigcup_{j=0}^{p n-1} I_{j, 0} \tag{29}
\end{equation*}
$$

Note that $U \subset[n]$ since $j<p n$ in the union above. The projection π is then defined by $\pi(x)=j \in \mathbb{Z}_{p n}$ whenever $x \in I_{j, 0}$. Clearly, condition (b) is satisfied.

Let us now prove that condition (a) is satisfied. Let $S \subset \pi^{-1}(Y)$ be a set satisfying $\mid S \cap$ $\pi^{-1}(x) \mid \leq 1$ for all $x \in Y$. This ensures that $\left.\pi\right|_{S}$ is a one-to-one map. Moreover, $\pi(S) \subset Y$ is a B_{h}-set. Let $\left(a_{1}, \ldots, a_{h}\right)$ be an arbitrary h-tuple such that $a_{1}, \ldots, a_{h} \in S$ with $a_{1} \leq \cdots \leq a_{h}$ and let $0 \leq \ell \leq h p n-1$ be such that $a_{1}+\cdots+a_{h} \in I_{\ell}$. We claim that $\pi\left(a_{1}\right)+\cdots+\pi\left(a_{h}\right)=\ell$ $\bmod p n$. Indeed, for each $i \in[h]$, let j_{i} be such that $a_{i} \in I_{j_{i}, 0}$ and observe that by (28), we have $a_{i} \in\left[\frac{j_{i}}{p}+1, \frac{j_{i}}{p}+\frac{1}{h p}\right]$. Therefore,

$$
a_{1}+\cdots+a_{h} \in\left[\frac{j_{1}+\cdots+j_{h}}{p}+h, \frac{j_{1}+\cdots+j_{h}}{p}+h \times \frac{1}{h p}\right] \subset I_{j_{1}+\cdots+j_{h}}
$$

Hence $\ell=j_{1}+\cdots+j_{h}$ and since $\pi\left(a_{i}\right)=j_{i} \bmod p n$, it follows that $\pi\left(a_{1}\right)+\cdots+\pi\left(a_{h}\right)=\ell$ $\bmod p n$. Since $\pi(S)$ is a B_{h}-set and $\left.\pi\right|_{S}$ is one-to-one, it follows that no other h-tuple $\left(b_{1}, \ldots, b_{h}\right)$ with $b_{1}, \ldots, b_{h} \in S$ and $b_{1} \leq \cdots \leq b_{h}$ can satisfy $\pi\left(b_{1}\right)+\cdots+\pi\left(b_{h}\right)=\ell \bmod p n$. In other words, no other h-tuple $\left(b_{1}, \ldots, b_{h}\right)$ satisfies $b_{1}+\cdots+b_{h} \in I_{\ell}$ and hence S must be a B_{h}-set.

6. Proofs of Theorems 2.4 and 2.9

We need some preparations for the proofs of Theorems 2.4 and 2.9 . For the remainder of this section, we fix an integer $h \geq 2$ and a function $g=g(n)$. Since we are only proving asymptotic

Claim 6.1. With the assumptions above, for any $S \neq \emptyset$, we have

$$
\begin{equation*}
\mathbf{E}_{y \in \mathbb{Z}_{n}}\left[E_{S \cup\{y\}, \ell}(\lambda)-E_{S, \ell}(\lambda)\right] \leq \frac{1}{n} E_{S, \ell}(\lambda)\left(E_{S, \ell-1}(\ell \lambda)-n\right) . \tag{31}
\end{equation*}
$$

Proof. Note first that

$$
r_{S \cup\{y\}, \ell}(z) \leq r_{S, \ell}(z)+\mathbf{1}[z=\ell y]+\sum_{i=1}^{\ell-1} r_{S, \ell-i}(z-i y) .
$$

Hence,

$$
\sum_{y \in \mathbb{Z}_{n}} E_{S \cup\{y\}, \ell}(\lambda) \leq \sum_{z \in \mathbb{Z}_{n}}\left[\exp \left(\lambda r_{S, \ell}(z)\right) \sum_{y \in \mathbb{Z}_{n}} \exp (\lambda \mathbf{1}[z=\ell y]) \prod_{i=1}^{\ell-1} \exp \left(\lambda r_{S, \ell-i}(z-i y)\right)\right] .
$$

It follows from Hölder's inequality that for every $z \in \mathbb{Z}_{n}$, the inner sum on the right-hand side of the above inequality is bounded from above by

$$
\left(\sum_{y \in \mathbb{Z}_{n}} \exp (\lambda \mathbf{1}[z=\ell y])^{\ell}\right)^{1 / \ell} \prod_{i=1}^{\ell-1}\left(\sum_{y \in \mathbb{Z}_{n}} \exp \left(\lambda r_{S, \ell-i}(z-i y)\right)^{\ell}\right)^{1 / \ell} .
$$

Consequently, recalling that we suppose that $h!$ and n are co-prime and thus that each $i \in[\ell]$ is co-prime with n, we have

$$
\begin{equation*}
\sum_{y \in \mathbb{Z}_{n}} E_{S \cup\{y\}, \ell}(\lambda) \leq E_{S, \ell}(\lambda)\left(\left(n+e^{\ell \lambda}-1\right) \prod_{i=i}^{\ell-1} E_{S, \ell-i}(\ell \lambda)\right)^{1 / \ell} \tag{32}
\end{equation*}
$$

Observe that if $S \neq \emptyset$, then for all $\ell \geq \ell^{\prime}$,

$$
\begin{equation*}
E_{S, \ell}(\lambda) \geq E_{S, \ell^{\prime}}(\lambda) \geq n+e^{\lambda}-1 \tag{33}
\end{equation*}
$$

To see this, note that for every $\ell \in[h-1]$, every $x \in S$, and every $z \in \mathbb{Z}_{n}$, we have $r_{S, \ell+1}(z) \geq$ $r_{S, \ell}(z-x)$. Inequalities (32) and (33) imply that for every non-empty S and all $\lambda>0$,

$$
\begin{equation*}
\sum_{y \in \mathbb{Z}_{n}} E_{S \cup\{y\}, \ell}(\lambda) \leq E_{S, \ell}(\lambda) E_{S, \ell-1}(\ell \lambda) . \tag{34}
\end{equation*}
$$

387 Inequality (31) follows from (34) and the claim is proved.

We now set

$$
\lambda_{\ell}=\frac{h!\log (2 n)}{\ell!g}
$$

for each $\ell \in[h]$. We shall call $y \in \mathbb{Z}_{n} \backslash S$ a good extension of a set S if for all $2 \leq \ell \leq h$,

$$
\begin{equation*}
E_{S \cup\{y\}, \ell}\left(\lambda_{\ell}\right) \leq E_{S, \ell}\left(\lambda_{\ell}\right)\left(1+\frac{2 h}{\varepsilon} \frac{E_{S, \ell-1}\left(\lambda_{\ell-1}\right)-n}{n}\right) \tag{35}
\end{equation*}
$$

Claim 6.2. With the assumptions above, for any $S \neq \emptyset$ with $|S| \leq \varepsilon n / 6$, at least $(1-2 \varepsilon / 3) n$ elements $y \in \mathbb{Z}_{n}$ are good extensions of S.

Proof. Inequality (31) in Claim 6.1 and Markov's inequality, together with the fact that $\ell \lambda_{\ell}=$ $\lambda_{\ell-1}$, tell us that the number of $y \in \mathbb{Z}_{n}$ that violate 35) is at most $(\varepsilon / 2 h) n$. Summing over all ℓ and recalling that $|S| \leq \varepsilon n / 6$, we obtain that the number of $y \in \mathbb{Z}_{n}$ that fail to be good is at most $(2 \varepsilon / 3) n$.

We are now in position to prove Theorem 2.9.
Proof of Theorem 2.9. Fix $\varepsilon>0$ and assume that $1 \leq m \leq(\varepsilon / 3 h)\left(n^{1-h!/ g}\right)^{1 / h}$. We may and shall assume that $m \geq \log n$, since otherwise the random set $[n]_{m}$ is a.a.s. a B_{h}-set and we are done. Therefore, we have $m \rightarrow \infty$.

Let $R=\left(x_{1}, \ldots, x_{m}\right)$ be an ordered random subset of \mathbb{Z}_{n}. We construct a subset $S \subset R$ as follows. Let $S_{1}=\left\{x_{1}\right\}$ and for $1<j \leq m$, let

$$
S_{j}= \begin{cases}S_{j-1} \cup\left\{x_{j}\right\}, & \text { if } x_{j} \text { is a good extension of } S_{j-1} \\ S_{j-1}, & \text { otherwise }\end{cases}
$$

We shall show that $S=S_{m}$ is a $B_{h}[g]$-set and that a.a.s. it has at least $(1-\varepsilon) m$ elements.
Claim 6.3. The set $S=S_{m}$ is a $B_{h}[g]$-set.
Proof. We shall first prove by induction that for every $1 \leq \ell \leq h$ and every $1 \leq j \leq m$, the following inequality holds

$$
\varphi(\ell, j): \quad E_{S_{j}, \ell}\left(\lambda_{\ell}\right) \leq n+(2 h / \varepsilon)^{\ell-1} e^{\lambda_{1}}\left|S_{j}\right|^{\ell}
$$

Observe that regardless of x_{1}, for every $\ell \in[h]$,

$$
E_{S_{1}, \ell}\left(\lambda_{\ell}\right)=E_{\left\{x_{1}\right\}, \ell}\left(\lambda_{\ell}\right)=(n-1)+e^{\lambda_{\ell}} \leq n+e^{\lambda_{1}}
$$

and hence $\varphi(\ell, 1)$ holds for all ℓ. Moreover, it follows from (30) that $\varphi(1, j)$ holds for all j. Thus, it is enough to prove that if $\ell \geq 2$, then, assuming that $\varphi\left(\ell^{\prime}, j^{\prime}\right)$ holds for all pairs $\left(\ell^{\prime}, j^{\prime}\right)$ such that $\ell^{\prime}<\ell$ or $j^{\prime}<j$, the inequality $\varphi(\ell, j)$ is satisfied as well. If $S_{j}=S_{j-1}$, then there is nothing to show, and so we may assume that $S_{j}=S_{j-1} \cup\left\{x_{j}\right\}$, where x_{j} is a good extension of S_{j-1}. In this case, letting $s=\left|S_{j-1}\right|$, we have

$$
\begin{aligned}
E_{S_{j}, \ell}\left(\lambda_{\ell}\right) & \leq E_{S_{j-1}, \ell}\left(\lambda_{\ell}\right)\left(1+\frac{2 h}{\varepsilon} \frac{E_{S_{j-1}, \ell-1}\left(\lambda_{\ell-1}\right)-n}{n}\right) \\
& \leq\left(n+(2 h / \varepsilon)^{\ell-1} e^{\lambda_{1}} s^{\ell}\right)\left(1+\frac{2 h}{\varepsilon} \frac{(2 h / \varepsilon)^{\ell-2} e^{\lambda_{1}} s^{\ell-1}}{n}\right) \\
& =n+(2 h / \varepsilon)^{\ell-1} e^{\lambda_{1}} s^{\ell}+(2 h / \varepsilon)^{\ell-1} e^{\lambda_{1}} s^{\ell-1}+\frac{(2 h / \varepsilon)^{2 \ell-3} e^{2 \lambda_{1}} s^{2 \ell-1}}{n} \\
& \leq n+(2 h / \varepsilon)^{\ell-1} e^{\lambda_{1}}(s+1)^{\ell} .
\end{aligned}
$$

To see the last inequality above, note that $(s+1)^{\ell} \geq s^{\ell}+2 s^{\ell-1}$ and that

$$
\begin{equation*}
(2 h / \varepsilon)^{\ell-1} s^{\ell} e^{\lambda_{1}} \leq(2 h / \varepsilon)^{h-1} m^{h} e^{\lambda_{1}} \leq n, \tag{36}
\end{equation*}
$$

since $(2 h m / \varepsilon)^{h} \leq n^{1-h!/ g} \leq e^{-\lambda_{1}} n$.
In particular, $\varphi(h, m)$ holds and therefore, by (36), for every $z \in S$,

$$
\exp \left(\lambda_{h} r_{S, h}(z)\right) \leq E_{S, h}\left(\lambda_{h}\right) \leq n+(2 h / \varepsilon)^{h-1} m^{h} e^{\lambda_{1}} \leq 2 n
$$

and hence $r_{S, h}(z) \leq \lambda_{h}^{-1} \log (2 n)=g$. In other words, S is a $B_{h}[g]$-set.
Finally, we estimate the probability that $|S|<(1-\varepsilon) m$. If this is the case, then there are more than εm indices j for which x_{j} is not a good extension of S_{j-1}. For each j, at least $(1-2 \varepsilon / 3) n$ elements of $\mathbb{Z}_{n} \backslash\left\{x_{1}, \ldots, x_{j-1}\right\}$ are good extensions of S_{j-1}. Since x_{j} is a uniformly chosen random element of $\mathbb{Z}_{n} \backslash\left\{x_{1}, \ldots, x_{j-1}\right\}$, letting $\operatorname{Bin}(N, p)$ be a binomial random variable with parameters N and p, we have

$$
\mathbf{P}(|S|<(1-\varepsilon) m) \leq \mathbf{P}(\operatorname{Bin}(m, 1-2 \varepsilon / 3)<(1-\varepsilon) m) \leq \exp \left(-c_{\varepsilon} m\right)
$$

for some constant $c_{\varepsilon}>0$, and hence $|S| \geq(1-\varepsilon) m$ with probability $1-o(1)$. This completes the proof of Theorem 2.9.

We now derive Theorem 2.4 from Theorem 2.9 in the same way that we deduced Proposition 2.3 (ii) from Lemma 5.1.

Proof of Theorem 2.4. Fix $\delta>0$. Let $0<\beta \leq 1 / 6$ be such that $(1-2 \beta)(1-\delta / 3) \geq 1-\delta$ and $\binom{(1+\beta) t}{\beta t} \leq(1+\delta / 3)^{t}$. Now let $m=(1+\beta) t$, and note that we may suppose that $m \leq$ $(\beta / 6 h)\left(n^{1-h!/ g}\right)^{1 / h}$. It follows from Theorem 2.9 that $F_{h, g}\left([n]_{m}\right) \geq(1-\beta / 2) m \geq t$ with probability at least $1-\beta$. We conclude that

$$
\begin{equation*}
Z_{n}^{h, g}(t) \geq(1-\beta)\binom{n}{(1+\beta) t}\binom{n}{\beta t}^{-1} \tag{37}
\end{equation*}
$$

The lower bound in (8) follows from (37) by the calculations given in (27).

7. Concluding Remarks

We close with two conjectures.
Conjecture 7.1. Fix an integer $h \geq 3$ and $\varepsilon>0$. For every $t \geq n^{1 /(2 h-1)+\varepsilon}$ and every large enough n, we have

$$
\begin{equation*}
\left|\mathcal{Z}_{n}^{h}(t)\right| \leq\left(\frac{n}{t^{h-\varepsilon}}\right)^{t} . \tag{38}
\end{equation*}
$$

Note that Proposition 2.3 implies that, if true, Conjecture 7.1 is basically optimal.
Conjecture 7.2. Let $h \geq 3$ be an integer. Suppose $0 \leq a \leq 1$ is a fixed constant and $m=$ $m(n)=(1+o(1)) n^{a}$. Then a.a.s. $F_{h}\left([n]_{m}\right)=n^{b+o(1)}$, where $b=b_{1}(a)$ and $b_{1}(a)$ is as given in (10).

It is worth mentioning that an argument following the lines of the proof of the upper bound in Theorem 2.6 shows that Conjecture 7.1 implies Conjecture 7.2. At the time of writing, we strongly believe that we are able to prove Conjecture 7.1 for $h=3$.

References

1. N. Alon, J. Balogh, R. Morris, and W. Samotij, Counting sum-free sets in Abelian groups, Israel J. Math, to appear.
2. R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. $\mathbf{3 7}$ (1962/1963), 141-147.
3. P. J. Cameron and P. Erdős, On the number of sets of integers with various properties, Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, pp. 61-79.
4. S. Chen, On the size of finite Sidon sequences, Proc. Amer. Math. Soc. 121 (1994), no. 2, 353-356.
5. S. Chowla, Solution of a problem of Erdős and Turán in additive-number theory, Proc. Nat. Acad. Sci. India. Sect. A. 14 (1944), 1-2.
6. J. Cilleruelo, New upper bounds for finite B_{h} sequences, Adv. Math. 159 (2001), no. 1, 1-17.
7. D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Submitted, 70pp, 2010.
8. A. G. D'yachkov and V. V. Rykov, B_{s}-sequences, Mat. Zametki 36 (1984), no. 4, 593-601.
9. P. Erdős, On a problem of Sidon in additive number theory and on some related problems. Addendum, J. London Math. Soc. 19 (1944), 208.
10. P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
11. B. Green, The number of squares and $B_{h}[g]$ sets, Acta Arith. 100 (2001), no. 4, 365-390.
12. H. Halberstam and K. F. Roth, Sequences, second ed., Springer-Verlag, New York, 1983.
13. S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York, 2000.
14. X. D. Jia, On finite Sidon sequences, J. Number Theory 44 (1993), no. 1, 84-92.
15. D. J. Kleitman and D. B. Wilson, On the number of graphs which lack small cycles, manuscript, $15 \mathrm{pp}, 1996$.
16. D. J. Kleitman and K. J. Winston, On the number of graphs without 4-cycles, Discrete Math. 41 (1982), no. 2, 167-172.
17. Y. Kohayakawa, S. Lee, V. Rödl, and W. Samotij, The number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers, Random Structures Algorithms, to appear.
18. Y. Kohayakawa, S. Lee, and V. Rödl, The maximum size of a Sidon set contained in a sparse random set of integers, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA), SIAM, 2011, pp. 159-171.
19. M. N. Kolountzakis, The density of $B_{h}[g]$ sequences and the minimum of dense cosine sums, J. Number Theory 56 (1996), no. 1, 4-11.
20. F. Krückeberg, B_{2}-Folgen und verwandte Zahlenfolgen, J. Reine Angew. Math. 206 (1961), 53-60.
21. B. Lindström, A remark on B_{4}-sequences, J. Combinatorial Theory 7 (1969), 276-277.
22. K. O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin. (2004), Dynamic surveys 11, 39 pp. (electronic).
23. D. Saxton and A. Thomason, Hypergraph containers, arXiv:1204.6595, April 2012.
24. M. Schacht, Extremal results for random discrete structures, Submitted, 27pp, 2009.
25. I. E. Shparlinskiĭ, On B_{s}-sequences, Combinatorial analysis, No. 7 (Russian), Moskov. Gos. Univ., Moscow, 1986, pp. 42-45, 163.
26. J. Singer, A theorem in finite projective geometry and some applications to number theory, Transactions of the American Mathematical Society 43 (1938), 377-385.

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
(D. Dellamonica Jr., Y. Kohayakawa and V. Rödl)

E-mail address: domingos.junior@gmail.com, rodl@mathcs.emory.edu
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508090 São Paulo, Brazil (Y. Kohayakawa)

E-mail address: yoshi@ime.usp.br
Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea (S. J. Lee)

E-mail address: sjlee242@gmail.com

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Trinity College, Cambridge CB2 1TQ, UK (W. Samotij)

E-mail address: samotij@post.tau.ac.il

[^0]: Date: 2013/10/07, 9:49am.

