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Abstract. For a family F of graphs, a graph G is called F-universal if G contains every graph

in F as a subgraph. Let Fn(d) be the family of all graphs on n vertices with maximum degree at

most d. Dellamonica, Kohayakawa, Rödl and Ruciński [17] showed that, for d ≥ 3, the random

graph G(n, p) is Fn(d)-universal with high probability provided p ≥ C
(
logn
n

)1/d
for a sufficiently

large constant C = C(d). In this paper we prove the missing part of the result, that is, the random

graph G(n, p) is Fn(2)-universal with high probability provided p ≥ C
(
logn
n

)1/2
for a sufficiently

large constant C.

1. Introduction

For a positive integer n and a real number p in the range 0 ≤ p ≤ 1, the random graph G(n, p)

on a set V of n elements may be obtained from the complete graph on V by choosing each edge

with probability p, independently of all other edges.

After the random graph G(n, p) was first introduced by Erdős [22] in 1947, the theory of the

random graph has become an active area of research. One of the most interesting problems is the

containment problem, in which one tries to obtain conditions on p for the property that G(n, p)

contains a given graph H as a subgraph with high probability. For example, when n is even and the

given graph H is a perfect matching on V , then it is easy to see that np− log n→∞ is a necessary

condition, as there is an isolated vertex with substantial probability if np − log n is bounded.

Erdős and Rényi [23] showed the condition is also sufficient. In the case that H is a Hamiltonian

cycle, Komlós and Szemerédi [29] and Korshunov [30] discovered that the easy necessary condition

np− log n− log log n→∞ is also sufficient. More generally, if H is a factor of a strictly balanced

graph, including a triangle, a cycle or a complete graph, Johansson, Kahn and Vu [28] determined

a necessary and sufficient condition for the containment problem with respect to H. For more

information, the reader is referred to Bollobás [11] and Janson,  Luczak and Ruciński [26] and the

references therein.

One may also consider a family F of graphs rather than a single graph H. For a family F of

graphs, a graph G is called F-universal if G contains every graph in F as a subgraph. There is

extensive research on F-universal graphs when F are families of trees [13, 16], spanning trees [10,
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14, 15, 24], planar graphs of bounded degree [10], graphs of bounded size [7, 32], graphs of bounded

degree [2, 3, 4, 5, 12], and spanning graphs of bounded degree [1, 27], etc.

Since an F-universal graph G must have the maximum degree greater than or equal to the max-

imum degrees of all graphs in F , a family F of graphs of bounded degree may be considered. For

example, one may consider the family Tn(d) of all trees on n vertices with maximum degree at most

d. Bhatt, Chung, Leighton and Rosenberg [10] showed that there is a Tn(d)-universal graph on n

vertices with maximum degree depending only on d. For d ≥ log n, Johannsen, Krivelevich and

Samotij [27] proved that there is a positive constant c such that G(n, p) with p ≥ cdn−1/3 log n is

asymptotically almost surely (a.a.s.) Tn(d)-universal; where, in general, a property holds asymp-

totically almost surely, or simply a.a.s., if it holds with probability tending to 1 as n → ∞. In

particular, we have that G(n, p) with p ≥ cn−1/3(log n)2 is a.a.s. Tn(log n)-universal, and hence,

Tn(d)-universal for a constant d. For the family T(1−ε)n(d) of all trees on (1 − ε)n vertices with

maximum degree at most d, Alon, Krivelevich and Sudakov [6] showed that for every positive con-

stant ε and positive integer d, there exists a constant c = c(ε, d) such that G(n, p) with p = c/n is

a.a.s. T(1−ε)n(d)-universal. For more related results, [19, 8, 9] may be referred.

In this paper, we consider the family Fn(d) of all graphs on n vertices with maximum degree

at most d. For an even n and d = 1, the Fn(1)-universality is equivalent to the containment

problem for a perfect matching. Provided that n is divisible by d + 1, one may easily see that

p ≥
(
(logn)1/d

n

)2/(d+1)
is a necessary condition for G(n, p) being a.a.s. Fn(d)-universal, since Fn(d)

contains a Kd+1-factor, and hence, every vertex must be contained in a copy of Kd+1. On the

other hand, Dellamonica, Kohayakawa, Rödl and Ruciński [20, 21] proved that p ≥ C
( logn

n

)1/(2d)
is sufficient, for a sufficiently large constant C.

Theorem 1 ([20, 21]). For every integer d ≥ 2, there exists a positive constant C = C(d) such

that if p ≥ C
(
(logn)2

n

)1/(2d)
, then the random graph G(n, p) is a.a.s. Fn(d)-universal.

Recently the above result was notably improved for d ≥ 3.

Theorem 2 ([17, 18]). For every integer d ≥ 3, there exists a positive constant C = C(d) such

that if p ≥ C
( logn

n

)1/d
, then the random graph G(n, p) is a.a.s. Fn(d)-universal.

In this paper, we show that the statement of Theorem 2 holds for d = 2.

Theorem 3. There exists a positive constant C such that if p ≥ C
( logn

n

)1/2
, then the random graph

G(n, p) is a.a.s. Fn(2)-universal.

The rest of this paper is organized as follows. In the next section we define a notion of a ‘good ’

graph and introduce two main lemmas, which imply Theorem 3. Sections 3 and 4 are for the proofs

of the two lemmas.

In this paper, we will use the following notation and convention.

Notation and convention: For a graph G and v ∈ V (G), the set NG(v) denotes the set of

neighbors of v in G. Similarly, for U ⊂ V (G), the set NG(U) denotes the set of vertices which are
2



adjacent to a vertex in U . The graph G[U ] denotes the subgraph of G induced on U . For simplicity,

we omit floor and ceiling symbols when they are not essential.

2. Good graph and two lemmas

In order to show Theorem 3, by monotonicity, it suffices to show the statement of Theorem 3 with

p = C
( logn

n

)1/2
for a sufficiently large constant C. Hence, from now on, we fix p as p = C

( logn
n

)1/2
.

Throughout the paper, we let

δ = 0.01 and ε = 0.001.

Now we provide the definition of a ‘good ’ graph. Let V be a vertex set on n vertices. We fix a

partition V = V0 ∪ V1 ∪ · · · ∪ V6 such that

|V1| = · · · = |V6| = εn and |V0| = (1− 6ε)n ≥ (3/4)n.

For a graph G on V and k = 1 or 2, let U ⊂ V and L be a collection of pairwise disjoint k-subsets

of V \ U . We consider a bipartite graph B(L, U) between L and U , in which L ∈ L and u ∈ U are

adjacent if and only if L ⊂ NG(u).

Now we are ready to define a good graph.

Definition 4. A graph G on V is called ‘ (n,C)-good’ if the following properties hold.

(P1) There exists a matching M of G[V0] with |M| = 2εn such that for all U ⊂ V \ V (M) with

|U | ≤ δn

C2 log n
, we have

∣∣∣{{a, b} ∈ M ∣∣ a ∼ u, b ∼ u for some u ∈ U
}∣∣∣ ≥ C2 log n

16n
|M||U |.

(P2) Let k = 1 or 2, and L be a collection of pairwise disjoint k-subsets of V .

If |L| ≤ δ

Ck

( n

log n

)k/2
, then, for Vi with Vi ∩

(⋃
L∈L L

)
= ∅, i = 1, ..., 6, we have that

|N
B(L,Vi)

(L)| ≥ (1− δ)Ck
( log n

n

)k/2
|L||Vi|. (2.1)

If |L| ≥ log n

Ck−1

( n

log n

)k/2
, then, for all U with |U | ≥ log n

Ck−1

( n

log n

)k/2
and U∩

(⋃
L∈L L

)
=

∅, the graph B(L, U) has at least one edge.(
No requirement is needed when

δ

Ck

( n

log n

)k/2
< |L| < log n

Ck−1

( n

log n

)k/2)
.

Remark 5. For p = C
( logn

n

)1/2
, the above inequality (2.1) may be written as

|N
B(L,Vi)

(L)| ≥ (1− δ)pk|L||Vi|.

Notice that pk|L||Vi| is the expected number of edges in B(L, Vi) if G were G(n, p). It is easy to see

that only few vertices of Vi are of degree 2 or more in B(L, Vi). Hence, |NB(L,Vi)(L)| is almost the

same as the number of edges in B(L, Vi).

We will show the following two lemmas.
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Lemma 6. There exists a positive constant C such that an (n,C)-good graph is Fn(2)-universal

provided that n is sufficiently large.

Lemma 7. There exists a positive constant C such that the random graph G(n, p) on V with

p = C
( logn

n

)1/2
is a.a.s. (n,C)-good.

Our proof of Lemmas 6 and 7 will be given in Sections 3 and 4, respectively. Theorem 3 clearly

follows from Lemmas 6 and 7.

3. Universality of good graph

For the proof of Lemma 6, we may assume that H is a maximal graph in Fn(2), in the sense that

no edge may be added to H to be a graph in Fn(2). Then, it is easy to see that all but at most

one vertex of H have degree 2. We will show that there exists a positive constant C such that, for

a sufficiently large n, an (n,C)-good graph G contains a copy of H as a subgraph. To this end, a

partition of W := V (H) will be used, and each part will be embedded at a time. A subset of W

is called k-independent in H if the distance between every distinct pair of vertices in the subset is

greater than k.

Lemma 8. Let H be a maximal graph in Fn(2). Then there is a partition W := V (H) = W0 ∪
W1 ∪ · · · ∪W6 with

|W0| = 4εn, |W6| = 2εn, |Wi| ≥ 2εn, i = 1, 2, ..., 5, (3.1)

such that

(1) W1, ...,W5 are 2-independent.

(2) W6 is 3-independent, and all vertices of W6 are of degree 2.

(3) W0 = NH(W6).

Proof. We first construct W6 and W0. Since the maximum degree of H is 2, for each vertex v in H,

there are at most 6 vertices that are of distance 3 or less from v, excluding v itself. By the greedy

algorithm, it is easy to see that there is a 3-independent set of size at least n/7. Hence, we may

choose W6 satisfying |W6| = 2εn and (2) as there is at most one vertex of degree less than 2. Let

W0 :=
⋃
w∈V6 NH(w). Clearly, |W0| = 4εn as W6 is 3-independent.

Next, we consider Wi for 1 ≤ i ≤ 5. Let H2 be the graph on the vertex set W in which two

vertices are adjacent if and only if two vertices are of distance at most 2 in H. Since H has the

maximum degree 2, the maximum degree of H2 is at most 4. Using Hajnal–Szemerédi Theorem [25],

we may partition W into 5 independent sets of H2 so that each part is of size at least n/5− 1. By

removing all vertices in W0 ∪W6 from each part, W1,W2, ...,W5 may be obtained. Then, it is clear

that each Wi is 2-independent in H and |Wi| is at least n/5− 1− 6εn ≥ 2εn, for i = 1, ..., 5. �

A bijection from W to V = V (G) is called an embedding of H to G if it maps each edge of

H to an edge of G. We now find an embedding of H to G using an algorithm modified from the

embedding algorithm in [17, 18]: Take a partition W0, ...,W6 of W as described in Lemma 8. We

will embed Wi into V0 ∪ · · · ∪ Vi.
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Figure 1. The bipartite graph Bi = Bi(Wi, V
∗
i )

To map W0 into V0, recall that W0 = NH(W6) and |NH(w)| = 2 for all w ∈W6. For a matching

M = {e1 , ..., e2εn} in G[V0] with (P1) and W6 = {wi , ..., w2εn}, it is enough for us to take a bijection,

say f0, from W0 to V (M) such that NH(wi) is mapped to ei , where V (M) is the set of end vertices

of all edges in M.

The mapping f0 is an embedding of W0 to V0: Since V6 is a 3-independent set in H, the sets

NH(w), w ∈ V6, are pairwise disjoint and there is no edge between them. Hence, every edge e in

W0 belongs to NH(w) for some w ∈W6. As every NH(w) is mapped to an edge in M⊂ E(G[V0])

under f0, the edge e is mapped to an edge in G[V0].

Assuming an embedding

fi−1 : W0 ∪W1 ∪ · · · ∪Wi−1 → V0 ∪ V1 ∪ · · · ∪ Vi−1

is defined, i = 1, 2, ..., 6, we will embed Wi into V ∗i := Vi ∪ (V0 ∪ V1 ∪ · · · ∪ Vi−1) \ Image(fi−1) to

extend fi−1 to an embedding

fi : W0 ∪W1 ∪ · · · ∪Wi → V0 ∪ V1 ∪ · · · ∪ Vi.

Let Bi(Wi, V
∗
i ), or just Bi, be the bipartite graph in which w ∈Wi and v ∈ V ∗i are adjacent if and

only if

fi−1

(
NH(w) ∩ (W0 ∪ · · · ∪Wi−1)

)
⊂ NG(v).

(See Figure 1). Or equivalently, for Li(w) := fi−1

(
NH(w) ∩ (W0 ∪ · · · ∪Wi−1)

)
, Li :=

{
Li(w) :

w ∈Wi

}
and the bipartite graph B(Li, V ∗i ) defined just before Definition 4,

w ∼ v in Bi(Wi, V
∗
i ) if and only if Li(w) ∼ v in B(Li, V ∗i ). (3.2)

If possible, take a Wi -matching of Bi, i.e., a matching in Bi that covers all vertices in Wi. (Later,

we will show that this is possible). The image of w ∈Wi under the mapping fi is defined to be the

vertex in V ∗i that is matched to w in the Wi-matching. For w 6∈Wi, fi(w) = fi−1(w).
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The mapping fi is an embedding of Wi to V ∗i : For an edge e in W0 ∪ · · · ∪Wi, at most one

end point of e is in Wi since Wi is 2-independent, especially independent. If both ends of e are in

W0 ∪ · · · ∪Wi−1, then fi(e) = fi−1(e) is an edge in G. If one end, say w, of e is in Wi, then the

other end, say w′, is in NH(w) ∩ (W0 ∪ · · · ∪Wi−1). Hence, w ∼ fi(w) in Bi(Wi, V
∗
i ) implies that

fi−1

(
NH(w) ∩ (W0 ∪ · · · ∪Wi−1)

)
⊂ NG(fi(w)),

in particular, fi(w
′) = fi−1(w

′) ∈ NG(fi(w)), i.e., {fi(w′), fi(w)} is an edge.

It remains to show that there exists a Wi-matching in Bi = Bi(Wi, V
∗
i ) for i = 1, ..., 6. We

first show the following, which guarantees Hall’s condition for a subset U of Wi satisfying some

condition.

Lemma 9. Let i = 1, ..., 6. If U ⊂Wi satisfying |U | ≤ |V ∗i | − n/C, then

|NBi(U)| ≥ |U |.

Proof. Let U = U0 ∪ U1 ∪ U2, where

Uj :=
{
w ∈Wi : |NH(w) ∩ (W0 ∪ · · · ∪Wi−1)| = j

}
.

If U0 6= ∅, then NBi(U) = V ∗i and hence |NBi(U)| = |V ∗i | > |U | as |U | ≤ |V ∗i | − n/C. We now

assume that U0 = ∅. Take Uk such that |Uk| ≥ |U |/2.

Case 1: the case when |Uk| ≤ δ
Ck

(
n

logn

)k/2
. For Li(u) := fi−1

(
NH(u) ∩ (W1 ∪ · · · ∪Wi−1)

)
and

L(Uk) =
{
Li(u) : u ∈ Uk

}
, We have that

N
B(Li,V ∗i )

(
L(Uk)

)
∩ Vi ⊂ NBi(Uk) :

For v ∈ Vi with L(u) ∼ v in B(Li, V ∗i ) for some u ∈ Uk, it follows from (3.2) that u ∼ v in Bi for

u ∈ Uk, or equivalently, v ∈ NBi(Uk). Notice that

N
B(Li,V ∗i )

(
L(Uk)

)
∩ Vi = N

B(L(Uk),Vi)

(
L(Uk)

)
.

Property (P2) implies that

|NBi(Uk)| ≥ |N
B(L(Uk),Vi)

(L(Uk))| ≥ (1− δ)Ckεn
( log n

n

)k/2
|Uk|

≥ εC2(log n)

2
|Uk|, (3.3)

as k = 1 or 2. In particular, |NBi(Uk)| ≥ 2|Uk| ≥ |U |.

Case 2: the case when δ
Ck

(
n

logn

)k/2
< |Uk| ≤ logn

Ck−1

(
n

logn

)k/2
. Taking a subset U ′k of Uk of size

δ
Ck

(
n

logn

)k/2
, it follows from (3.3) that

|NBi(Uk)| ≥ |NBi(U
′
k)| ≥

εδC2−k(log n)

2

( n

log n

)k/2
=

εδC

2
· log n

Ck−1

( n

log n

)k/2
≥ 2|Uk| ≥ |U |
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as C is sufficiently large and ε and δ are absolute constants.

Case 3: the case when |Uk| > logn
Ck−1

(
n

logn

)k/2
. We will show that

|NBi(Uk)| ≥ |V ∗i | − n/C (≥ |U |).

We first observe that there is no edge of Bi = Bi(Wi, V
∗
i ) between Uk and V ∗i \NBi(Uk). Hence, for

L(Uk) defined as in Case 1, it follows from (3.2) that there is no edge of B(Li, V ∗i ) between L(Uk)

and V ∗i \ NBi(Uk). This means that the induced subgraph B
(
L(Uk), V

∗
i \ NBi(Uk)

)
of B(Li, V ∗i )

has no edge. Since |L(Uk)| = |Uk| > logn
Ck−1

(
n

logn

)k/2
, the property (P2) yields that

|V ∗i \NBi(Uk)| <
log n

Ck−1

( n

log n

)k/2
≤ n

C
,

which is equivalent to |NBi(Uk)| ≥ |V ∗i | − n/C as desired. �

Corollary 10. For i = 1, ..., 5, there exists a Wi-matching in Bi(Wi, V
∗
i ).

Proof. One can easily show that |Wi| < |V ∗i | − n/C for i = 1, ..., 5. Indeed, we have

|V ∗i | = |V0 ∪ · · · ∪ Vi| − |W0 ∪ · · · ∪Wi−1|

= |Wi ∪ · · · ∪W6| − |Vi+1 ∪ · · · ∪ V6|,

and

|V ∗i | − |Wi| = |Wi+1 ∪ · · · ∪W6| − |Vi+1 ∪ · · · ∪ V6|

≥ (6− i)2εn− (6− i)εn = (6− i)εn ≥ εn > n

C

where the first inequality follows from (3.1) and the last inequality holds for a sufficiently large

constant C. Clearly, for all U ⊂ Wi, we have |U | < |V ∗i | − n/C for 1 ≤ i ≤ 5. Hence, Lemma 9

yields that for every U ⊂ Wi, we have |NBi(U)| ≥ |U |. Consequently, Hall’s theorem implies

Corollary 10. �

Next, we consider the case when i = 6.

Lemma 11. There exists a W6-matching in B6 = B6(W6, V
∗
6 ).

Proof. It suffices to check Hall’s condition, that is, for every U ⊂W6,

|NB6(U)| ≥ |U |. (3.4)

If |U | ≤ |V ∗6 | − n/C = 2εn− n/C, then Lemma 9 implies (3.4). Hence, we assume that

|U | > 2εn− n/C.

Notice that

|U |+
∣∣∣NB6

(
V ∗6 \NB6(U)

)∣∣∣ ≤ |W6| = 2εn
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since U and NB6

(
V ∗6 \ NB6(U)

)
are disjoint. If |V ∗6 \ NB6(U)| ≥ δn

C2 logn
, take a subset Y of

V ∗6 \NB6(U) with |Y | = δn
C2 logn

. Then, by equation (3.2) and Property (P1), we infer∣∣∣NB6

(
V ∗6 \NB6(U)

)∣∣∣ ≥ |NB6(Y )| ≥ εδ

8
n >

n

C

and |U |+
∣∣∣NB6

(
V ∗6 \NB6(U)

)∣∣∣ > 2εn, which is a contradiction. Therefore, |V ∗6 \NB6(U)| < δn
C2 logn

.

Then, Property (P1) together with (3.2) implies that∣∣∣NB6

(
V ∗6 \NB6(U)

)∣∣∣ ≥ C2ε log n

8

∣∣V ∗6 \NB6(U)
∣∣ > ∣∣V ∗6 \NB6(U)

∣∣.
Since |NB6(U)| + |V ∗6 \ NB6(U)| = |V ∗6 | = 2εn and |U | +

∣∣∣NB6

(
V ∗6 \ NB6(U)

)∣∣∣ ≤ |W6| = 2εn, we

have

|NB6(U)|+ |V ∗6 \NB6(U)| ≥ |U |+
∣∣∣NB6

(
V ∗6 \NB6(U)

)∣∣∣
> |U |+

∣∣V ∗6 \NB6(U)
∣∣,

that is, |NB6(U)| > |U |. �

4. Random graph is good.

In order to show Lemma 7, we need to show that there exists a positive constant C such that the

random graph G(n, p) with p = C
( logn

n

)1/2
a.a.s. satisfies Properties (P1) and (P2) in Definition 4.

Our proof of Properties (P1) and (P2) of G(n, p) will be given in Sections 4.1 and 4.2, respectively.

In the proofs, we will use the following version of Chernoff’s bound.

Lemma 12 (Chernoff’s bound, Corollary 4.6 in [31]). Let Xi be independent random variables

such that Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi, and let X =
∑n

i=1Xi. For 0 < λ < 1,

Pr
[
|X − E(X)| ≥ λE(X)

]
≤ 2 exp

(
− λ2

3
E(X)

)
.

4.1. Property (P1). In order to show that G(n, p) with p = C
( logn

n

)1/2
a.a.s. satisfies Prop-

erty (P1), it suffices to show the following lemma.

Lemma 13. There exists a positive constant C such that G(n, p) with p = C
( logn

n

)1/2
a.a.s.

satisfies the following: There exists a matching M with |M| = 2εn in the subgraph of G(n, p)

induced on V0 such that for all U ⊂ V \ V (M) with |U | ≤ δn
C2 logn

, we have∣∣∣{{a, b} ∈ M ∣∣ a ∼ u, b ∼ u for some u ∈ U
}∣∣∣ ≥ C2 log n

16n
|M||U |.

Proof. Let G1 = G
(
n − 6εn, 2 lognn

)
on the vertex set V0 and G2 = G(n, p/2) on the vertex set V .

It is easy to see that G(n, p) on V stochastically contains G1 ∪ G2. Hence, it is enough to show

that G1 ∪G2 a.a.s. contains a matching M described in Lemma 13.

The result of Erdős and Rényi [23] implies that G1 a.a.s. contains a matching in V0 covering

all but at most one vertex. Hence, G1 on V0 a.a.s. contains a matching of size 2εn. Take such a

matching M in G1.
8



Let

X(U) :=
∣∣∣{e ∈M ∣∣ e ⊂ NG2

(u) for some u ∈ U
}∣∣∣.

Notice that X(U) is the sum of independent and identically distributed (i.i.d.) random variables

Xe, e ∈M, where

Xe =

{
1 if e ⊂ NG2

(u) for some u ∈ U
0 otherwise.

Since |U | ≤ δn
C2 logn

, we have that for each e ∈M,

Pr
[
Xe = 0

]
=

(
1−

(p
2

)2)|U |
≤ 1− |U |p

2

4
+
|U |2p4

32

≤ 1−
(

1− δ

8

) |U |p2
4
≤ 1− |U |p

2

8
,

or equivalently, Pr
[
Xe = 1

]
≥ 1

8 |U |p
2. Hence,

E
(
X(U)

)
≥ p2

8
|M||U | = C2 log n

8n
|M||U |.

Chernoff’s bound (Lemma 12) yields that

Pr
[
X(U) <

C2 log n

16n
|M||U |

]
≤ Pr

[
|X(U)− E

(
X(U)

)
| ≥ 1

2
E
(
X(U)

)]
≤ 2 exp

(
− 0.01p2|M||U |

)
= 2 exp

(
− 0.01 · 2εC2|U | log n

)
≤ 2 exp

(
− 3|U | log n

)
≤ 2

n3|U |
.

Therefore, we infer

Pr
[
∃ U ∈ V \ V (M) with |U | ≤ δn

C2 log n
such that X(U) <

C2 log n

16n
|M||U |

]
≤

n∑
`=1

n`
2

n3`
≤ n · 2

n2
= o(1),

which completes the proof of Lemma 13. �

4.2. Property (P2). We now show that G(n, p) with p = C
( logn

n

)1/2
a.a.s. satisfies Property (P2).

First, recall the following definition which was given just before Definition 4: For a graph G on V

and k = 1 or 2, let U ⊂ V and L be a collection of pairwise disjoint k-subsets of V \U . We consider

a bipartite graph B(L, U) between L and U , in which L ∈ L and u ∈ U are adjacent if and only if

L ⊂ NG(u).

In order to show that G(n, p) with p = C
( logn

n

)1/2
a.a.s. satisfies Property (P2), it suffices to

show the following lemma.

Lemma 14. There exists a positive constant C such that G(n, p) with p = C
( logn

n

)1/2
a.a.s.

satisfies the following: Let k = 1 or 2, and L be a collection of pairwise disjoint k-subsets of V .
9



(a) If |L| ≤ δ

Ck

( n

log n

)k/2
, then, for Vi with Vi ∩

(⋃
L∈L L

)
= ∅, i = 1, ..., 6, we have that

|N
B(L,Vi)

(L)| ≥ (1− δ)Ck
( log n

n

)k/2
|L||Vi|.

(b) If |L| ≥ log n

Ck−1

( n

log n

)k/2
, then, for all U with |U | ≥ log n

Ck−1

( n

log n

)k/2
and U ∩

(⋃
L∈L L

)
= ∅,

the graph B(L, U) has at least one edge.

Proof. For a proof of (a) of Lemma 14, we observe that X(L, Vi) := |N
B(L,Vi)

(L)| is the sum of i.i.d.

random variables Xv, v ∈ Vi, where

Xv =

{
1 if L ⊂ NG(v) for some L ∈ L
0 otherwise.

Since |L| = k for all L ∈ L and pk|L| ≤ δ = 0.01, we have

E
(
X(L, Vi)

)
= |Vi|

(
1− (1− pk)|L|

)
≥ (1− δ/2) pk|L||Vi| = (1− δ/2)Ck

( log n

n

)k/2
|L||Vi|.

Chernoff’s bound (Lemma 12) implies that

Pr
[
X(L, Vi) < (1− δ)Ck

( log n

n

)k/2
|L||Vi|

]
≤ Pr

[
|X(L, Vi)− E

(
X(L, Vi)

)
| ≥ δ

2
E
(
X(L, Vi)

)]
≤ 2 exp

(
− δ2

12
E
(
X(L, Vi)

))
,

and by pk|Vi| ≥ p2εn = C2ε log n,

Pr
[
X(L, Vi) < (1− δ)Ck

( log n

n

)k/2
|L||Vi|

]
≤ 2 exp

(
− 3|L| log n

)
=

2

n3|L|
.

Therefore, we infer that

Pr
[
∃ Vi,L with 1 ≤ |L| ≤ δ

Ck

(
n

logn

)k/2
such that X(L, Vi) < (1− δ)Ck

( log n

n

)k/2
|L||Vi|

]
≤ 6

n∑
`=1

n`
2

n3`
≤ 6n

2

n2
= o(1),

which completes the proof of (a) of Lemma 14.

For a proof of (b) of Lemma 14, we observe that the number Y (L, U) of edges in B(L, U) is the

sum of i.i.d. random variables YL,u for L ∈ L and u ∈ U , where

YL,u =

{
1 if L ⊂ NG(u)

0 otherwise.

Since |L| = k for all L ∈ L, we have E
(
Y (L, U)

)
= pk|L||U |. Chernoff’s bound (Lemma 12) yields

that

Pr
[
Y (L, U) = 0

]
≤ Pr

[∣∣Y (L, U)− E
(
Y (L, U)

)∣∣ ≥ 1

2
E
(
Y (L, U)

)]
≤ 2 exp

(
− 1

12
E
(
Y (L, U)

))
≤ 2 exp

(
− 1

12
pk|L||U |

)
.

10



For ` ≥ logn
Ck−1

(
n

logn

)k/2
and r ≥ logn

Ck−1

(
n

logn

)k/2
, the number of L with |L| = ` is at most

(
n
k

)` ≤ nk`

and the number of U with |U | = r is at most
(
n
r

)
, and we have

Pr
[
∃ L, U with |L| = `, |U | = r such that Y (L, U) = 0

]
≤ nk`nr · 2 exp

(
− 1

12
pk`r

)
≤ 2 exp

((
k`+ r

)
log n− 1

12
pk`r

)
.

Since pk` = Ck
( logn

n

)k/2
` ≥ C log n and pkr = Ck

( logn
n

)k/2
r ≥ C log n, we have that

(k`+ r) log n ≤ 0.01C(`+ r) log n ≤ 0.01
(
pk`r + pk`r

)
≤ 0.02pk`r,

and hence,

nk`nr · 2 exp
(
− 1

12
pk`r

)
≤ 2 exp

(
− 1

24
pk`r

)
≤ 2 exp

(
− C2−k

24

(
n

logn

)k/2
(log n)2

)
≤ 2 exp

(
−n1/2

)
.

Therefore, we infer that

Pr
[
∃ L, U with |L|, |U | ≥ logn

Ck−1

(
n

logn

)k/2
such that Y (L, U) = 0

]
≤ n

k
· n · 2 exp

(
− n1/2

)
= o(1),

which completes the proof of (b) of Lemma 14. �

5. Concluding remarks

One may ask about how the approach of this paper can be used for the case that d ≥ 3. We

believe that our approach for finding a suitable matching given in Lemma 13 can be also applied

in order to find a suitable family of vertex disjoint d-cliques when d ≥ 3 and p ≥ C
( logn

n

)1/d
.

This approach together with an embedding algorithm modified from the algorithm in Dellamonica,

Kohayakawa, Rödl and Ruciński [17, 18] may provide a simpler proof of Theorem 2.

As a further research direction, we are interested in resolving the following problem.

Problem 15. For an integer d ≥ 2, determine the largest constant a = a(d) with 0 ≤ a ≤ 1 such

that if p ≥ n−a+o(1), then G(n, p) is a.a.s. Fn(d)-universal.

An easy observation mentioned in the introduction gives an upper bound 2
d+1 for a. The current

best lower bound is 1
d based on the result in Dellamonica, Kohayakawa, Rödl and Ruciński [17, 18]

and this paper.

Acknowledgement. The second author thanks D. Dellamonica, Y. Kohayakawa, V. Rödl, and

A. Ruciński for their helpful comments.
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[7] L. Babai, F. R. K. Chung, P. Erdős, R. L. Graham, and J. H. Spencer, On graphs which contain all sparse

graphs, Theory and practice of combinatorics, North-Holland Math. Stud., vol. 60, North-Holland, Amsterdam,

1982, pp. 21–26.

[8] J. Balogh, B. Csaba, M. Pei, and W. Samotij, Large bounded degree trees in expanding graphs, Electron. J.

Combin. 17 (2010), no. 1, Research Paper 6, 9.

[9] J. Balogh, B. Csaba, and W. Samotij, Local resilience of almost spanning trees in random graphs, Random

Structures Algorithms 38 (2011), no. 1-2, 121–139.

[10] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Universal graphs for bounded-degree trees

and planar graphs, SIAM J. Discrete Math. 2 (1989), no. 2, 145–155.

[11] B. Bollobás, Random graphs, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge

University Press, Cambridge, 2001.

[12] M. R. Capalbo and S. R. Kosaraju, Small universal graphs, Annual ACM Symposium on Theory of Computing

(Atlanta, GA, 1999), ACM, New York, 1999, pp. 741–749 (electronic).

[13] F. R. K. Chung and R. L. Graham, On graphs which contain all small trees, J. Combinatorial Theory Ser. B 24

(1978), no. 1, 14–23.

[14] , On universal graphs, Second International Conference on Combinatorial Mathematics (New York, 1978),

Ann. New York Acad. Sci., vol. 319, New York Acad. Sci., New York, 1979, pp. 136–140.

[15] , On universal graphs for spanning trees, J. London Math. Soc. (2) 27 (1983), no. 2, 203–211.

[16] F. R. K. Chung, R. L. Graham, and N. Pippenger, On graphs which contain all small trees. II, Combinatorics

(Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, North-Holland, Amsterdam, 1978, pp. 213–223. Colloq.

Math. Soc. János Bolyai, 18.
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