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Abstract. We define and study the notion of numerical equivalence on algebraic
cobordism cycles. We prove that algebraic cobordism modulo numerical equivalence of
a smooth projective variety is a finitely generated module over the Lazard ring, and it
reproduces the Chow group modulo numerical equivalence.

We compare it with homological equivalence and smash-equivalence for cobordism
cycles, using Kimura finiteness on cobordism motives. We partially resolve the cobor-
dism analogue of a conjecture by Voevodsky on smash-equivalence and numerical equiv-
alence.

1. Introduction

In the theory of algebraic cycles, various adequate equivalences on them play essential
roles (see [1, Sections 3.1–2]). Now, the theory of algebraic cobordism, as pioneered
by Levine and Morel in [9] (see also [10] and Section 2) allows one to study algebraic
cycles and motives from a more general perspective. It is an interesting question to ask
whether various adequate equivalences for algebraic cycles can be lifted up to the level
of algebraic cobordism cycles. One such attempt for algebraic equivalence was made
in [7] so that one obtained the theory Ω∗alg(−) of algebraic cobordism modulo algebraic
equivalence.

The objective of the present work is to define and study the notion of numerical
equivalence for algebraic cobordism cycles. In the classical situation of algebraic cycles,
it has a long history and was the ground of “enumerative geometry”. In simple words,
this is based on counting the numbers of intersection points of two varieties, with suitable
multiplicities. For cobordism cycles, this naive notion of counting does not work and
this requires a bit of care.

This trouble can be overcome by treating the graded ring L (called the Lazard ring;
see Section 2), as a substitute for the ring Z of integers; instead of naively counting the
number of intersection points, we “count” the L-“intersection” values of two cobordism
cycles. Notice that such an idea of using L systematically instead of Z is not new. In
[9], L is the cobordism ring Ω∗(pt) of a point. In [7], it was proved that the Griffiths
group is a finitely generated abelian group if and only if the cobordism Ω∗alg is a finitely
generated L-module. Furthermore, the functor −⊗L Z carries the cobordism groups to
Chow groups with the respective adequate equivalences.

Using the product in cobordism rings with values in L, we define numerical equivalence
for algebraic cobordism cycles, and algebraic cobordism modulo numerical equivalence
in Section 3. We first prove the following results:

Theorem 1.1. Let X be a smooth projective variety over a field k of characteristic zero.
Let Ω∗num(X) be the algebraic cobordism of X modulo numerical equivalence. Then,

(1) there is an isomorphism Ω∗num(X) ⊗L Z ' CH∗num(X), where CH∗num(X) is the
Chow group of X modulo numerical equivalence, and
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(2) Ω∗num(X) is a finitely generated L-module.

In case of algebraic cycles, to each choice of a Weil cohomology theory, there corre-
sponds a homological equivalence. Its independence from the choice of a Weil cohomol-
ogy theory is conjectured, but not known. For cobordism cycles, a notion of homological
equivalence was defined in [7] using complex cobordism when X is a smooth variety over
C. On the other hand, one can also use the étale cobordism of Quick [14] to give another
notion of homological equivalence for varieties over more general base fields. In Section
4, we prove the following:

Theorem 1.2. Let X be a smooth projective variety over k.

(1) Let k be a field with an embedding into C. Considering the homological equiva-
lence given by the complex cobordism MU, a homologically trivial cobordism cycle
is also numerically trivial.

(2) Let k be any field of characteristic zero. Considering the homological equivalence
given by the étale cobordism MUét of Quick, a homologically trivial cobordism
cycle is also numerically trivial.

The notion of smash nilpotence of algebraic cycles was considered by Voevodsky [21]
and Voisin [22]. It was extended to cobordism cycles in [7, Section 10], where it was
proved that algebraically trivial cobordism cycles are smash nilpotent. For algebraic cy-
cles, Voevodsky [21, Conjecture 4.2] conjectures that an algebraic cycle is smash nilpotent
if and only if it is numerically trivial. The forward direction is known ([21, Corollary 3.3]
and [22, Lemma 2.3]). Recently, Sebastian [17] proved part of the Voevodsky conjecture
in the backward direction for 1-cycles on smooth projective varieties dominated by prod-
ucts of curves. The question on the cobordism analogue of Voevodsky conjecture was
first raised in [7, Remark 10.5]. We prove the forward direction in Section 5, and the
cobordism analogue of the result of Sebastian is answered in Section 7. In the process,
we develop the notion of Kimura finiteness on cobordism motives in Section 6. Here is
a summary:

Theorem 1.3. Let X be a smooth projective variety over k of characteristic 0 and let
α be a cobordism cycle on X.

(1) If k has an embedding into C and α is smash nilpotent, then it is homologically
trivial.

(2) If α is smash nilpotent, then it is numerically trivial.
(3) If k = k̄ and X is dominated by a product of curves, then any numerically trivial

cobordism 1-cycle α is smash nilpotent.

2. Recollection of algebraic cobordism theories

We recall some definitions on algebraic cobordism from [9, Sections 2.1–4]. Let X be
a k-scheme of finite type.

Definition 2.1 ([9, Definition 2.1.6]). A cobordism cycle over X is a family (f : Y →
X,L1, . . . , Lr), where Y is smooth and integral, f is projective, and (L1, . . . , Lr) is a finite
sequence of r ≥ 0 line bundles over Y . Its dimension is defined to be dim(Y ) − r ∈ Z.

An isomorphism Φ of cobordism cycles (Y → X,L1, . . . , Lr)
∼→ (Y ′ → X,L′1, . . . , L

′
r) is

a triple Φ = (ϕ : Y → Y ′, σ, (ψ1, . . . , ψr)) consisting of an isomorphism ϕ : Y → Y of

X-schemes, a bijection σ : {1, . . . , r} ∼→ {1, . . . , r}, and isomorphisms ψi : Li
∼→ ϕ∗L′σ(i)

of lines bundles over Y for all i.
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Let Z(X) be the free abelian group on the set of isomorphism classes of cobordism
cycles over X. Grading by the dimension of cobordism cycles makes Z∗(X) into a
graded abelian group. The image of a cobordism cycle (Y → X,L1, . . . , Lr) in Z∗(X)
is denoted by [Y → X,L1, . . . , Lr]. When X is smooth and equidimensional, the class
[IdX : X → X] ∈ Zd(X) is denoted as 1X .

Definition 2.2 ([9, Sections 2.1.2–3]).
(1) For a projective morphism g : X → X ′ in Schk, composition with g defines

the graded group homomorphism g∗ : Z∗(X) → Z∗(X ′) given by [f : Y →
X,L1, . . . , Lr] 7→ [g ◦ f : Y → X ′, L1, . . . , Lr]. g∗ is called the push-forward along
g.

(2) If g : X → X ′ is a smooth equidimensional morphism of relative dimension d, the
pull-back along g is defined to be the homomorphism g∗ : Z∗(X ′) → Z∗+d(X),
[f : Y → X ′, L1, . . . , Lr] 7→ [pr2 : Y ×X′ X → X, pr∗1(L1), . . . , pr∗1(Lr)].

(3) Let L be a line bundle on X. The homomorphism c̃1(L) : Z∗(X) → Z∗−1(X)
defined by [f : Y → X,L1, . . . , Lr] 7→ [f : Y → X,L1, . . . , Lr, f

∗(L)] is called the
first Chern class operator of L. If X is smooth, the first Chern class c1(L) of L
is defined to be the cobordism cycle c1(L) := c̃1(L)(1X).

(4) The external product × : Z∗(X) × Z∗(Y ) → Z∗(X × Y ) on the functor Z∗ is
defined by [f : X ′ → X,L1, . . . , Lr] × [g : Y ′ → Y,M1, . . . ,Ms] 7→ [f × g :
X ′ × Y ′ → X × Y, pr∗1(L1), . . . , pr∗1(Lr), pr

∗
2(M1), . . . , pr∗2(Ms)].

While for the Chow ring, c1(L ⊗M) = c1(L) + c1(M), this is not true in general for
oriented cohomology theories (see [9, Definition 1.1.2]) and addition has to be replaced
by a formal group law: c1(L ⊗M) = F (c1(L), c1(M)) for some power series F in two
variables. A commutative formal group law (R,FR) of rank 1 consists of a ring R and
FR ∈ R[[u, v]] satisfying conditions analogous to the operations in a group. In [8], Lazard
showed that there exists a formal group law (L, FL) of rank 1 which is universal: for any
other law (R,FR) there exists a unique morphism Φ(R,FR) : L → R which maps the
coefficients of FL onto those of FR. The ring L, called the Lazard ring, is isomorphic
to the polynomial ring Z[ai|i ≥ 1], and can be made into a graded ring L∗ by assigning
deg ai = i. See [9, Section 1.1] for details.

Definition 2.3 ([9, Definitions 2.4.5, 2.4.10]). ForX ∈ Schk, algebraic cobordism Ω∗(X)
is defined to be the quotient of Z∗(X)⊗ L∗ by the following three relations:
(Dim) If there is a smooth quasi-projective morphism π : Y → Z with line bun-

dles M1, . . . ,Ms>dimZ on Z with Li
∼→ π∗Mi for i = 1, . . . , s ≤ r, then [f : Y →

X,L1, . . . , Lr] = 0.
(Sect) For a section s : Y → L of a line bundle L on Y with the associated smooth divisor
i : D → Y , we impose [f : Y → X,L1, . . . , Lr, L] = [f ◦ i : D → X, i∗L1, . . . , i

∗Lr].
(FGL) For line bundles L and M on X, we impose the equality FL(c̃1(L), c̃1(M))([f :
Y → X,L1, . . . , Lr]) = c̃1(L ⊗M)([f : Y → X,L1, . . . , Lr]). By the relation (Dim), the
expression FL(c̃1(L), c̃1(M)) is a finite sum so that the operator is well-defined.

When X is smooth and equidimensional of dimension n, the codimension of a cobor-
dism d-cycle is defined to be n− d. We set Ωn−d(X) := Ωd(X), and Ω∗(X) is the direct
sum of the groups over all codimensions. Levine and Morel showed that algebraic cobor-
dism Ω∗ is a universal oriented cohomology theory on Smk (see [9, Definition 1.1.2]):

Theorem 2.4 ([9, Theorem 1.2.6]). Assume k has characteristic 0. Then, given any
oriented cohomology theory A∗ on Smk, there is a unique morphism νA : Ω∗ → A∗ of
oriented cohomology theories.
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3. Numerical equivalence on cobordism cycles

Let X be a smooth projective variety over a field k of characteristic 0. Consider the
composition of maps

(3.1) Ω∗(X)⊗ Ω∗(X)
×−→ Ω∗(X ×X)

∆∗X−→ Ω∗(X)
π∗→ Ω∗(k),

where × is the external product of cobordism cycles, ∆X is the diagonal morphism, and
π is the structure morphism X → Spec (k). This gives a map of L-modules Ω∗(X) −→
HomL(Ω∗(X),Ω∗(k)).

Definition 3.1. We say that a cobordism cycle is numerically equivalent to 0 if it is
in the kernel of this map, N∗(X) := ker(Ω∗(X) → HomL(Ω∗(X),Ω∗(k))), and we let
Ωnum
∗ (X) := Ω∗(X)/N∗(X), which is algebraic cobordism modulo numerical equivalence.

If α ∈ N∗(X), using the fact that ϕ commutes with pull-backs and push-forwards and
respects the product on the Chow group, one easily checks that ϕ : Ω∗(X) → CH∗(X)
maps α to an algebraic cycle numerically equivalent to 0. This gives a well-defined map
ϕnum : Ωnum

∗ (X) −→ CHnum
∗ (X).

Recall that ϕ factors through the canonical morphism Ω∗(X) ⊗L Z ϕ−→ CH∗(X),
which is an isomorphism of Borel-Moore weak homology theories on Schk (see [9, Defi-
nition 4.1.9]). Thus, ϕ = ϕ◦τ where τ : Ω∗(X)→ Ω∗(X)⊗LZ is the extension of scalars
via Φa : L→ Z. This shows that ϕ is surjective.

Theorem 3.2. Let X be a smooth projective variety over a field k of characteristic 0.

(1) ϕnum induces an isomorphism ϕnum : Ωnum
∗ (X)⊗L Z ' CHnum

∗ (X).
(2) Ωnum

∗ (X) is a finitely generated L-module.

Proof. (1) Let β ∈ CHnum
∗ (X) and let β′ be a lift in CH∗(X). Since ϕ is surjective,

β′ = ϕ(α) for some α ∈ Ω∗(X) whose image α in Ωnum
∗ (X) maps to β under ϕnum. Thus,

ϕnum is surjective. Now, we look at the following commutative diagram:

(3.2) 0 // N∗(X) //

��

Ω∗(X) //

ϕ

��

Ωnum
∗ (X) //

ϕnum

��

0

0 // Num∗(X) // CH∗(X) // CHnum
∗ (X) // 0,

where Num∗(X) denotes the group of numerically trivial algebraic cycles. Now, we find
the kernel of ϕnum.

Let α ∈ Ωnum
∗ (X) be the image of α ∈ Ω∗(X). If ϕnum(α) = 0, then ϕ(α) ∈ Num∗(X).

Consider the following commutative diagram:

(3.3) Ω∗(X)

ϕ

��

π∗ // Ω∗(k)

Φa
��

CH∗(X) π∗
// CH∗(k).

For any γ ∈ Ω∗(X),

Φa(π∗(α · γ)) = π∗(ϕ(α) · ϕ(γ)) = 0⇒ π∗(α · γ) ∈ L>0,

since ϕ is a ring homomorphism. N∗(X) +L>0 ·Ω∗(X) being an ideal in Ω∗(X), we may
write α ∈ α1 +N∗(X) + L>0 ·Ω∗(X). Clearly, for any γ ∈ Ω∗(X), π∗(α1 · γ) ∈ L>0. We
may assume α1 is a homogenous element. Let α1 ∈ Ωi(X). If i ≤ n = dimkX, pick any

non-zero γ ∈ Ωi(X). Then, α1 · γ ∈ Ω0(X) ⇒ π∗(α1 · γ) ∈ Ω0(k)
∼→ L0 ⇒ π∗(α1 · γ) =
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0 ⇒ α1 ∈ N∗(X) ⇒ α1 = 0. If i > n, then by the generalized degree formula (see [9,
Theorem 4.4.7]), α1 ∈ L>0 ·Ω∗(X)⇒ α1 = 0. This shows that α ∈ N∗(X)+L>0 ·Ω∗(X).
Going modulo N∗(X), we have α ∈ L>0 · Ωnum

∗ (X). Thus, ker(ϕnum) = L>0 · Ωnum
∗ (X).

Hence, ϕnum induces an isomorphism ϕnum : Ωnum
∗ (X) ⊗L Z ∼→ CHnum

∗ (X), since

Ωnum
∗ (X)/L>0 · Ωnum

∗ (X)
∼→ Ωnum

∗ (X)⊗L Z.
(2) This follows easily from [7, Lemma 9.8] since CH∗num(X) is finitely generated. In

fact, Ω∗num(X) is generated by any set of elements that map via ϕ to a set of generators
of CH∗num(X). �

Let X be a smooth irreducible k-scheme. The degree of a cobordism cycle on X has
been defined in [9, Definition 4.4.4] to be a homomorphism deg : Ω∗(X)→ Ω∗−dimkX(X).

Proposition 3.3. The degree of a numerically trivial cobordism cycle on X is zero.

Proof. Let α ∈ N∗(X). By the generalized degree formula (see [9, Theorem 4.4.7]), for

each closed integral subscheme Z ⊂ X, we have a projective birational morphism Z̃ → Z

with Z̃ in Smk and an element ωZ ∈ Ω∗−dimkZ(k), all but finitely many being zero, such
that

α = deg(α)[IdX ] +
∑

Z, codimXZ>0

ωZ · [Z̃ → X].

By the definition of numerical triviality, for any γ ∈ Ω∗(X), π∗(α · γ) = 0. Thus,

deg(α)π∗(γ) +
∑

Z, codimXZ>0

ωZ · π∗([Z̃ → X] · γ) = 0. In particular, choose a γ ∈ Ω0(X)

such that π∗(γ) 6= 0. Then, [Z̃ → X] · γ = 0 for all Z with codimXZ > 0. Since
π∗(γ) 6= 0, we must have deg(α) = 0. �

4. Homological equivalence

In this section, we show that homologically trivial cobordism cycles are numerically
trivial. Here, homological equivalence is considered for the complex cobordism MU and

the étale cobordism M̂Uét.

4.1. Complex cobordism. Let X be a smooth projective variety over k. In [15],
Quillen defined a notion of complex oriented cohomology theories on the category of
differentiable manifolds and showed that the complex cobordism theory X → MU∗(X)
can be interpreted as the universal complex oriented cohomology theory. For any em-
bedding σ : k ↪→ C, we have a canonical morphism of graded rings Φtop : Ω∗(X) −→
MU2∗(Xσ(C)) by the universality of algebraic cobordism. In [7], ker(Φtop) is defined to
be the group of cobordism cycles homologically equivalent to 0.

Theorem 4.1. Let X be a smooth projective variety over a field k with an embedding σ :
k ↪→ C. Under the above definition, a homologically trivial cobordism cycle is numerically
trivial.

Proof. Let π : X → Spec k be the structure map. The map Φtop is a ring homomorphism
and commutes with push-forwards. Thus, we have the following commutative square:

Ω∗(X)
π∗ //

Φtop

��

Ω∗+d(k)

Φtopo
��

MU2∗(Xσ(C))
π∗ // MU2∗+2d(pt),

where d := dimkX. By [9, Corollary 1.2.11.(1)], Φtop : Ω∗(k) → MU2∗(pt) is an iso-
morphism. Now let α ∈ Ω∗(X) be homologically trivial, i.e. Φtop(α) = 0. For any
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γ ∈ Ω∗(X), we have Φtop(α·γ) = Φtop(α)·Φtop(γ) = 0. Since the square above commutes,
Φtop(π∗(α · γ)) = π∗(Φ

top(α · γ)) = 0. Φtop : Ω∗(k) → MU2∗(pt) being an isomorphism,
π∗(α · γ) = 0, showing that α is numerically trivial. �

4.2. Etale cobordism. Let ` be a prime. Quick defined a notion of étale cobordism
in [14, Definition 4.11] on Smk and showed that the étale cobordism MU2∗

ét (−;Z/`) is
an oriented cohomology theory in [14, Theorem 5.7]. Hence, there is a canonical mor-
phism of oriented cohomology theories θ : Ω∗(X) → Ω∗(X) ⊗Z Z/` → MU2∗

ét (X;Z/`).
He also showed that for a separably closed field k of characteristic 0, the morphism
Ω∗(k;Z/`ν) → MU2∗

ét (k;Z/`ν) is an isomorphism. This implies that we have an isomor-

phism Ω∗(k;Z`)
θ`−→ M̂U

2∗
ét (k;Z`), where Z` is the ring of `-adic integers. Thus, we have

the following commutative diagram:

(4.1) Ω∗(X)
π∗ //

��

θ

!!

Ω∗+d(k)

η`
��

θ

||

Ω∗(X)⊗Z Z`
π∗ //

��

Ω∗+d(k)⊗Z Z`
θ`o
��

M̂U
2∗
ét (X;Z`)

π∗ // M̂U
2∗+2d

ét (k;Z`)

Note that the natural map η` is injective. We may use étale cobordism M̂Uét to define
another homological equivalence of cobordism cycles. A cobordism cycle is said to be

homologically trivial with respect to M̂Uét if it is in ker(θ). As in the case of complex
cobordism, we prove

Theorem 4.2. Let X be a smooth projective variety over a field k of characteristic zero,

and consider the homological equivalence defined by the étale cobordism M̂Uét. Then, a
homologically trivial cobordism cycle is numerically trivial.

Proof. Let α ∈ Ω∗(X) be homologically trivial, i.e. θ(α) = 0. For any γ ∈ Ω∗(X),
θ(α · γ) = θ(α) · θ(γ) = 0. By the commutativity of (4.1), we have θ ◦ π∗(α · γ) =
π∗ ◦ θ(α · γ) = 0. But θ = θ ◦ η` and θ is an isomorphism. Thus, η`(π∗(α · γ)) = 0. Since
η` is injective, π∗(α · γ) = 0, which means α is numerically trivial. �

5. Smash nilpotence

We recall the definition of smash nilpotence:

Definition 5.1 ([7, Definition 10.1]). Let X ∈ Schk. A cobordism cycle α ∈ Ω∗(X) is
said to be rationally smash nilpotent if, for some positive integerN , α�N := α×· · ·×α = 0
in Ω∗(X

N )Q.

Since we will be working with algebraic cobordism with Q-coefficients from now on,
we would say “smash nilpotent” to mean “rationally smash nilpotent”.

Theorem 5.2. Let X be a smooth projective variety over a field k with an embedding
σ : k ↪→ C. Then, smash nilpotent cycles in Ω∗(X)Q are homologically trivial.

Proof. In [19, p.471], it is shown that MU∗(X)Q is a free L∗ ⊗ Q-module generated by
any set of elements that map to a basis of H∗(X;Q). This, along with [3, Theorem 44.1]
shows that for smooth projective varieties X, Y , the homomorphism χ : MU∗(X)Q⊗L∗⊗Q
MU∗(Y )Q → MU∗(X × Y )Q is an isomorphism. Note also that, by definition, if α ∈
Ω∗(X), then θ(α�N ) ∈ MU∗(XN ) equals χ(θ(α)⊗N ). Thus, if α satisfies α�N = 0 ∈
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Ω∗(XN )Q for some N , then θ(α)⊗N = 0 ∈ MU∗(X)⊗NQ . From [15, Section 6], we know
that L∗ ⊗ Q is isomorphic to a polynomial ring over Q, and hence it has no non-zero
nilpotent elements. Since MU∗(X)Q is a free L∗ ⊗ Q-module, θ(α)⊗N = 0 implies that
θ(α) = 0. �

Theorem 5.3. Let X be a smooth projective variety over a field k of characteristic 0.
Then, smash nilpotent cycles in Ω∗(X)Q are numerically trivial.

Proof. Note that if β ∈ Ω∗(k)Q is smash-nilpotent, then it is nilpotent. However,

Ω∗(k)Q
∼→ L∗⊗Q, which is a polynomial ring over Q, and thus has no nonzero nilpotent.

Thus, β = 0. Let π : X → Spec k be the structure map. If α ∈ Ω∗(X)Q is smash nilpo-
tent, then for any γ ∈ Ω∗(X)Q, α · γ is smash-nilpotent by [7, Lemma 10.2] since the
push-forward and pull-back maps respect external products. This implies that π∗(α·γ) is
smash-nilpotent in Ω∗(k)Q, hence π∗(α ·γ) = 0, which means α is numerically trivial. �

We study the converse of Theorem 5.3 in Section 7. Specifically, we look at the cases,
where the results of Kahn-Sebastian [5] and Sebastian [17] are proven for algebraic cycles.
We develop some cobordism analogues of known results for algebraic cycles.

6. Kimura finiteness on cobordism motives

From now on, we will work on the category SmProjk of smooth projective varieties
over an algebraically closed field k of characteristic 0, and consider algebraic cobordism
with Q-coefficients.

6.1. Cobordism motives. In [13, Sections 5-6], for an oriented cohomology theory A∗,
Nenashev and Zainoulline constructed the A-motive of a smooth projective variety X,
following the ideas of [11]. We briefly recall its construction. Given A∗, we have the
category of A-correspondences, denoted as CorA, where

• Ob(CorA) := Ob(SmProjk),
• HomCorA(X,Y ) := A∗(X × Y ) and
• for α ∈ A∗(X,Y ) and β ∈ A∗(Y, Z), we have β ◦ α := (pXZ)∗(p

∗
XY (α) · p∗Y Z(β))

in A∗(X × Z).

We have a functor c : SmProjopk → CorA given by c(X) = X and c(f) = (Γf )∗(1A(X)) ∈
A∗(Y ×X) for a morphism f : X → Y , where Γf = (f, Id) : X → Y ×X is the graph
of f . The grading on A∗ induces a grading on HomCorA given by Homn

CorA
(X,Y ) :=

⊕iAn+di(Xi × Y ), where the Xi’s are the irreducible components of X and di = dimXi,
making HomCorA into a graded algebra under composition.

Definition 6.1. Consider the category Cor0
A with HomCor0

A
(X,Y ) := Hom0

CorA
(X,Y ).

The pseudo-abelian completion of Cor0
A is called the category of effective A-motives,

denoted by Meff
A . Thus, the objects in Meff

A are pairs (X, p) where X ∈ Ob(CorA) and
p ∈ HomCor0

A
(X,X) is a projector, and

HomMeff
A

((X, p), (Y, q)) =
{α ∈ HomCor0

A
(X,Y )|α ◦ p = q ◦ α}

{α ∈ HomCor0
A

(X,Y )|α ◦ p = q ◦ α = 0}
.

The category of A-motives, denoted by MA, has the triplets (X, p,m) as objects, where
(X, p) is an object in Meff

A and m ∈ Z. The morphisms are defined as:

HomMA
((X, p,m), (Y, q, n)) =

{α ∈ Homn−m
CorA

(X,Y )|α ◦ p = q ◦ α}
{α ∈ Homn−m

CorA
(X,Y )|α ◦ p = q ◦ α = 0}

.
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Note that, this means Id(X,p,0) = IdX = p ∈ HomMA
((X, p, 0), (X, p, 0)). The motive

(X, IdX , 0) is called the motive of X and denoted by hA(X).

6.2. Finite dimensionality of cobordism motives. Following [6, Section 3], we de-
fine finite-dimensionality of Ω∗Q-motives. Each partition λ = (λ1, . . . , λk) of an integer

n ≥ 1, determines an irreducible representation Wλ of Σn over Q. The group Sopn
acts on the n-fold product Xn of a smooth projective variety X by σ(x1, . . . , xn) :=
(xσ(1), . . . , xσ(n)) for σ ∈ Σn. Let fσ : Xn → Xn be the morphism associated to the ac-

tion of σ and define dλ ∈ CorΩ∗Q
(Xn, Xn) to be dλ := (dim Wλ/n!)·

∑
σ∈Σn

χWλ
(σ)·c(fσ)t.

Using the properties of Wλ and the fact that c is a functor, we get
∑
dλ = c(IdXn),

dλ ◦dλ = dλ and dλ ◦dµ = 0 whenever λ 6= µ. Thus, we have h(Xn) ' ⊕λTλXn inMΩ∗Q
,

where TλXn := (Xn, dλ, 0).

Definition 6.2. For a Ω∗Q-motive M = (X, p,m), we define M⊗n := (Xn, p�n,mn). If

f : M → N is a morphism of motives for M = (X, p,m1) and N = (Y, q,m2), we have
the morphism f⊗n : M⊗n → N⊗n defined to be f⊗n := f�n ∈ Ω∗(Xn × Y n)Q.

Let M = (X, p,m) be a motive. It follows by direct computation that c(fσ)t and p�n

commute with each other. This implies that dλ ◦ p�n = p�n ◦ dλ is idempotent. Thus,
we have the following definition:

Definition 6.3. For a motive M = (X, p,m), we define TλM to be the motive (Xn, dλ ◦
p�n,mn). When λ = (n), we denote T(n)M by SymnM and for λ = (1, 1, . . . , 1), we
denote T(1,1,...,1)M by ∧nM .

A motive M is evenly (resp. oddly) finite dimensional if there exists a positive integer
N , such that ∧NM = 0 (resp. SymNM = 0). M is said to be finite-dimensional if it can
be written as a direct sum M = M+ ⊕M− such that M+ is evenly finite dimensional
and M− is oddly finite dimensional.

Remark 6.4. Let L := (pt, Idpt,−1). This is called the Lefschetz motive. Note that, for

any i ≥ 0, ∧2Li = 0 since Σop
2 acts trivially on Li. Thus, Li is evenly 1-dimensional.

The following result of [6] holds in the case of Ω∗Q-motives by the same arguments as in

the proof of [6, Proposition 6.1], since the proof uses formal properties of the construction
above, rather than properties specific to the Chow ring.

Proposition 6.5. Any morphism between motives of different parity is smash-nilpotent.

Proposition 6.6. Let ϕ̃ :MΩ →MCH be the map induced by the canonical morphism
ϕ : Ω∗ → CH∗. If M is an Ω∗Q-motive such that ϕ̃(M) is evenly (resp. oddly) finite-

dimensional as a Chow motive, then, M is evenly (resp. oddly) finite-dimensional.

Proof. Let M = (X, p,m) be an Ω∗Q-motive such that ϕ̃(M) = (X,ϕ(p),m) is oddly

finite-dimensional as a Chow motive. That is, for someN ≥ 1, SymN ϕ̃(M) = (XN , (1/N !)·∑
σ∈ΣN

cCH(fσ)t◦ϕ(p)�N ,mN) = 0. But, cCH(fσ) = ϕ(cΩ(fσ)) and ϕ(cΩ(fσ)t)◦ϕ(p)�N =

ϕ(cΩ(fσ)t ◦p�N ) since ϕ is a ring homomorphism and commutes with push-forwards and
pullbacks. Thus, ϕ̃(SymNM) = 0. Vishik and Yagita showed in [20, Corollary 2.8]
that any isomorphism of Chow motives can be lifted to an isomorphism of cobordism
motives. This implies that SymNM = 0. The proof is similar when ϕ̃(M) is evenly
finite-dimensional. �

By [2, Corollary 8.2], for an abelian variety A of dimension g, we get a canonical

decomposition of the cobordism motive of A, hΩ(A) =
⊕2g

i=0 h
i
Ω(A), where hΩ(A) =

(A, IdA, 0) and hiΩ(A) = (A, πi, 0).
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Corollary 6.7. The motive hodd
Ω (A) := ⊕r:oddhrΩ(A) of an abelian variety A is oddly

finite-dimensional.

Proof. In [18], Shermenev gave a decomposition of the Chow motive of an abelian variety
A of dimension n as

hCH(A) =
n⊕
i=0

Symi(X, a+)⊕
n−1⊕
i=0

Symi(X, a+)⊗Ln−i

for some curve X and a projector a+ on X. It follows from [6, Theorem 4.2] that the mo-
tive (X, a+) defined by Shermenev is oddly finite-dimensional. Since odd symmetric pow-
ers of an oddly finite-dimensional motive is oddly finite-dimensional, we get that hodd

CH (A)

is oddly finite-dimensional. From [2, Corollary 8.2], we get ϕ̃(hodd
Ω (A)) = hodd

CH (A). Thus,

Proposition 6.6 implies that hodd
Ω (A) is oddly finite-dimensional. �

7. Voevodsky’s conjecture for cobordism cycles

Let k = k̄. Let A be an abelian variety over k. Our objective is to prove Theorem
7.10 and discuss its consequences. Recall that β ∈ Ω∗(A)Q is called a skew cycle if
〈−1〉∗β = −β, where, 〈n〉 denotes the endomorphism ×n on A for n ∈ Z.

Proposition 7.1. Any skew cycle on an abelian variety is smash-nilpotent.

We follow the sketch of [5, Proposition 1].

Proof. Let g = dimA. By [2, Corollary 8.2], we have the canonical decomposition,

hΩ(A) =
⊕2g

i=0 h
i
Ω(A), where hiΩ(A) = (A, πi, 0) such that c(〈n〉)◦πi = niπi = πi ◦c(〈n〉).

By Definition 6.1, we have Ωd(X)Q = Hom(Ld, hΩ(X)), where L = (pt, Idpt,−1) is the

Lefschetz motive. It is easy to check that Hom(Ld, hrΩ(A))
∼→ Ωd

2d−r(A)Q, where the

latter is defined to be {α ∈ Ωd(A)Q|〈n〉∗α = nrα,∀n ∈ Z}. Indeed, Hom(Ld, hrΩ(A)) =

πr∗Ω
d(A)Q and 〈n〉∗πr∗α = c(〈n〉) ◦ πr ◦ α.

Let β ∈ Ωd(A)Q be a skew cycle. Viewing β as a morphism in Hom(Ld, hΩ(A)), we
may write−πr◦β = πr◦(〈−1〉∗β) = πr◦c(〈−1〉)◦β = (−1)rπr◦β. Thus, πr◦β = 0 for even
r. This implies that β factors through hodd

Ω (A) via a morphism β′ ∈ Hom(Ld, hodd
Ω (A)).

Since Ld is evenly finite-dimensional by Remark 6.4, it follows from Corollary 6.7 and
Proposition 6.5 that β is smash nilpotent. �

Now, we will show that numerically trivial cobordism 1-cycles on a product of curves is
smash nilpotent. To achieve this, following the ideas in [17], we show that the ‘modified
diagonal’ cobordism cycle ∆c of Definition 7.5 is smash-nilpotent in Corollary 7.6. We
project ∆c to a smaller product of curves and apply induction to get our desired result.

Let Y be a smooth projective curve of genus g and let Jac(Y ) denote its Jacobian. Fix
N ≥ 3 and m > max{N, 2g+2}. By [17, Lemma 11], there is a collection {r1, r2, . . . , rm}
such that the following conditions are satisfied.

(S1)
∑m

l=1

(
m
l

)
lrl = 0.

(S2) For every even integer 0 ≤ i ≤ g − 1,
∑m

l=1

(
m
l

)
l2+irl = 0.

(S3)
∑m

l=N

(
m−N
l−N

)
rl 6= 0.

We may slightly modify (S2) to include i = −2;

(S2′) For every even integer −2 ≤ i ≤ g − 1,
∑m

l=1

(
m
l

)
l2+irl = 0.

Let S := {1, 2, . . . ,m} and let pi : Y m → Y denote the i-th projection. Choose a base
point y0 ∈ Y . For every non-empty subset T ⊂ S, define the morphism ϕT : Y → Y m

to be the unique one such that pi ◦ ϕT (y) = y if i ∈ T and pi ◦ ϕT (y) = y0 if i 6∈ T . Let
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∆T denote the cobordism cycle [ϕT : Y → Y m]. Let f : Y m → SymmY be the natural
quotient morphism. This is a projective morphism so that f∗ exists on cobordism cycles.
On the other hand, by [6, Proposition 4.1] and [16], SymmY is smooth since m ≥ 2g−2.
Thus, f is also an l.c.i. morphism, which implies f∗ exists for cobordism cycles by [9,
Section 6.5.4].

Consider the cobordism cycle ∆l := f∗∆T for some T ⊂ S with #T = l. Note that

∆l does not depend on the choice of T . In fact, ∆l =
(
m
k

)−1 ·
∑

#T=l[Y
f◦ϕT−→ SymmY ].

Lemma 7.2. f∗∆l = l!(m− l)!
∑

#T=l ∆T in Ω1(Y m)Q.

Proof. Clearly, f∗∆l = c
∑

#T=l ∆T for some c ∈ Z. Also, f∗f
∗ = m!. Thus, applying

f∗, we get m!∆l = c
∑

#T=l f∗∆T = c
(
m
l

)
∆l, implying c = l!(m− l)!. �

Definition 7.3. Define Γ :=
∑m

l=1

(
m
l

)
rl∆l in Ω1(SymmY )Q.

Lemma 7.4. Γ is smash-nilpotent.

Proof. Since m > 2g − 2, the natural map SymmY
π→ Jac(Y ) is the projective bundle

associated to a locally free sheaf over Jac(Y ) (see [6, Proposition 4.1] and [16]). Thus,
by the definition of oriented cohomology theory (see [9, Definition 1.1.2.(PB)], we have
Γ = c1(O(1))m−g−1 ·π∗β0+c1(O(1))m−g ·π∗β1, for some βi ∈ Ωi(Jac(Y ))Q. We first check
that π∗Γ is smash-nilpotent. Let ψ : Y → Jac(Y ) be the embedding using the base-point
y0. By [2, Theorem 6.2], we have a Beauville decomposition of Ωg−1(Jac(Y ))Q, giving
ψ∗(1Y ) =

∑
−26i6g−1 xi, such that 〈n〉∗xi = n2+ixi, where 〈n〉 is the morphism ×n on

Jac(Y ). Thus,

(7.1) π∗Γ =
m∑
l=1

(
m

l

)
rlπ∗∆l =

m∑
l=1

(
m

l

)
rl〈l〉∗ψ∗(1Y ) =

g−1∑
i=−2

( m∑
l=1

(
m

l

)
rll

2+i
)
xi.

Since the rl’s satisfy (S2′), we have that
∑m

l=1

(
m
l

)
rll

2+i = 0 for i even. Thus, Propo-
sition 7.1 implies that π∗Γ is smash-nilpotent. Now, by the projection formula, π∗Γ =
π∗(c1(O(1))m−g−1)·β0+π∗(c1(O(1))m−g)·β1. Let αi = π∗(c1(O(1))m−g+i) ∈ Ωi(Jac(Y ))Q,
so π∗Γ = α−1β0 + α0β1. We also have π∗{Γ · c1(O(1))} = α0β0 + α1β1. Note that,
ϕ[π∗{Γ·c1(O(1))}] = π∗[ϕ(Γ)·ϕ{c1(O(1))}], which is a 0-cycle of degree 0 by [17, Proposi-
tion 3]. Thus, by [9, Lemma 4.5.10], π∗{Γ ·c1(O(1))} is of the form

∑
ni[{pi} → Jac(Y )],

where ni ∈ Z and
∑
ni = 0. But, on a smooth projective variety, such a cobordism cycle

is algebraically trivial by [12, Lemma in p.56] and [7, Theorem 5.1]. Thus, π∗(Γ·c1(O(1)))
is smash-nilpotent by [7, Theorem 10.3]. We now use the degree formula (see [9, Theo-
rem 4.4.7]) to conclude that β0 and β1 (and hence Γ) are smash-nilpotent. The degree
formula gives that

• β0 =
∑
ni[{pi} → Jac(Y )], where ni ∈ Z and pi’s points in Jac(Y ).

• β1 =
∑
mj [C̃j → Jac(Y )] +

∑
γs[{qs} → Jac(Y )], where mj ∈ Z, γs ∈ L1,

qs’s are points in Jac(Y ) and C̃j ’s are smooth curves with projective birational

morphisms C̃j → Cj ⊂ Jac(Y ).

• αi =
∑min(g,g−i)

j=max(0,−i)
∑

l∈Kj
i
ωli,jx

l
i,j , where ωli,j ∈ Lj , xli,j ∈ Ωi+j(Jac(Y )) and

|Kj
i | <∞.
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For j = −i, we have Kj
i = {1}, x1

i,j = [IdX ] and it follows by [4, Proposition 3.1(a)(i)]

that ω1
0,0 = 1. We may write

α−1β0 + α0β1 = (ω1
−1,1[IdX ] +

g∑
j=2

∑
l∈Kj

−1

ωl−1,jx
l
−1,j)

∑
ni[{pi} → J ]+

+ ([IdX ] +

g∑
j=1

∑
l∈Kj

0

ωl0,jx
l
0,j)(

∑
mj [C̃j → Jac(Y )] +

∑
γl[{ql} → Jac(Y )])

=
∑

niω
1
−1,1[{pi} → J ] +

∑
γs[{qs} → Jac(Y )] +

∑
mj [C̃j → Jac(Y )]+∑

j

∑
l∈K1

0

mjω
l
0,1x

l
0,1[C̃j → Jac(Y )].

Now, by [17, Lemma 4], ϕ(β1) =
∑
mj [Cj ] is smash-nilpotent. [9, Lemma 4.5.3] gives us

that
∑
mj [C̃j → Jac(Y )]+

∑
µt[{rt} → Jac(Y )] is smash-nilpotent for some points rl in

Jac(Y ) and µl ∈ L1. Multiplying with ωl0,1x
l
0,1, we get that

∑
mjω

l
0,1x

l
0,1[C̃j → Jac(Y )]

is smash-nilpotent by [7, Lemma 10.2(1)]. Hence,
∑
mj
∑

l∈K1
0
ωl0,1x

l
0,1[C̃j → Jac(Y )] is

smash-nilpotent. Since α−1β0 +α0β1 is smash-nilpotent, this gives ω1
−1,1β0 +β1 is smash-

nilpotent. Next, note that α0β0 + α1β1 = β0 +
∑

l∈K0
1
ωl1,0x

l
1,0

∑
mj [C̃j → Jac(Y )]

is smash nilpotent. Similarly as above,
∑

l∈K0
1
ωl1,0x

l
1,0

∑
mj [C̃j → Jac(Y )] is smash-

nilpotent. This implies that β0, and hence β1 are smash-nilpotent, which completes the
proof. �

Definition 7.5. Define the modified diagonal cobordism cycle to be ∆c := (1/m!) · f∗Γ.

By Lemma 7.2, ∆c =
∑m

l=1 rl(
∑

T⊂S,#T=l ∆T ). Then, Lemma 7.4 shows that

Corollary 7.6. ∆c is smash-nilpotent.

Now, let X := C1 × C2 × · · · × CN be a product of N smooth projective curves. Let
Y be a smooth projective curve with a morphism j : Y → X. Let qi : X → Ci denote
the projection onto the i-th factor. Define a morphism ψ : Y m → X as

Y m pr−→ Y N jN−→ XN q1×···×qN−−−−−−→ X

where pr is the projection to the first N coordinates. Let S0 := {1, 2, . . . , N}. For a
closed point v = (v1, . . . , vN ) of X and a subset T ⊂ S0, we define ζvT : X → X to be the
unique morphism such that qi ◦ ζvT (x) = qi(x) if i ∈ T , and qi ◦ ζvT (x) = vi if i 6∈ T . Note
that ζvT = Id if and only if T = S0. It is also clear from the definition that, for T ⊂ S

we have ψ ◦ ϕT = ζ
j(y0)
T∩S0

◦ j.

Lemma 7.7. For two closed points v and v′ in X, and α ∈ Ω∗(X), two cobordism cycles

ζvT∗(α) and ζv
′
T∗(α) are algebraically equivalent.

Proof. Let XT =
∏
i∈T Ci and prT : X → XT be the projection. Let l = m − |T | and

{1, 2, . . . ,m} \ T = {a1, . . . , al}. Then, ζvT = ιl ◦ · · · ◦ ι1 ◦ p where ιj : XT∪{a1,...,aj−1} →
XT∪{a1,...,aj} be the inclusion of vaj . Similarly, ζv

′
T = ι′l◦· · ·◦ι′1◦p where ι′j is the inclusion

of v′aj .

By [9, Proposition 3.1.9], for X ′ in Smk and a smooth projective curve C with a closed
point {p}, we have [X ′×{p} → X ′×C] = [OX′×C(X ′×{p})]. For another closed point
{p′} in C, the line bundles OX′×C(X ′ × {p}) and OX′×C(X ′ × {p′}) are algebraically
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equivalent so that [X ′ × {p} → X ′ × C] ∼alg [X ′ × {p′} → X ′ × C] by the definition of
algebraic equivalence as in [7]. Thus, for any cobordism cycle βj ∈ Ω∗(XT∪{a1,...,aj−1}),

we have ιj∗(β) ∼alg ι
′
j∗(β) for any j, thereby implying ζvT∗(α) ∼alg ζ

v′
T∗(α). �

Definition 7.8. Define κ :=

m∑
l=N

(
m−N
l −N

)
rl, which is nonzero as the rl’s satisfy (S3).

Lemma 7.9. The cobordism 1-cycle α = [j : Y → X] ∈ Ω1(X)Q is smash-equivalent to
a cycle coming from a smaller product of curves.

Proof. Let v = j(y0). Then,

ψ∗∆c =

m∑
l=1

rl

( ∑
T⊂S,#T=l

ψ∗∆T

)
=

m∑
l=1

rl

( ∑
T⊂S,#T=l

ζvT∩S0∗α
)
.

Note that if T ⊃ S0, ζvT∩S0
= Id and ψ∗∆T = 0 if T ∩ S0 = ∅. Let S be the set of all

subsets of S that intersect S0 and let U be the set of all subsets of S that contain S0.
Then,

ψ∗∆c =

m∑
l=1

rl

( ∑
T∈U ,#T=l

α
)

+

m∑
l=1

rl

( ∑
T∈S\U ,#T=l

ζvT∩S0∗α
)

= α

(
m∑
l=N

rl

(
m−N
l −N

))
+

m∑
l=1

rl

( ∑
T∈S\U ,#T=l

ζvT∩S0∗α
)

Thus, by Corollary 7.6, α + (1/κ) ·
∑m

l=1 rl(
∑

T∈S\U ,#T=l ζ
v
T∩S0∗α) is smash-nilpotent.

Note that ζvT∩S0
is a projection to a smaller product of curves, followed by an inclusion

to X. This proves the lemma. �

Theorem 7.10. Let α be a numerically trivial cobordism 1-cycle on X. Then, α is
smash-nilpotent.

Proof. By the degree formula [9, Theorem 4.4.7], we have α =
∑
ni[ji : Ỹi → X] +∑

γj [{pj} → X], where ni ∈ Z, γj ∈ L1, pj ’s are points in X, Ỹi’s are smooth projective

curves, and ji is the composition of a birational morphism Ỹi → Yi with the inclusion
Yi → X for a closed irreducible Yi ⊂ X. Since α is numerically trivial, ϕ(α) =

∑
ni[Yi]

is numerically trivial in CH∗(X). By Theorem 3.2,
∑
ni[Ỹ ′i → X] is numerically trivial

for some Ỹ ′i s in Smk with projective birational morphisms π′i : Ỹ ′i → Yi. Using [9,
Lemma 4.5.3], we have∑

ni[Ỹ ′i → X] =
∑

ni[ji : Ỹi → X] +
∑

βl[{p′l} → X].

This implies that
∑
γj [{pj} → X] −

∑
βl[{p′l} → X] is numerically trivial. Note that

[{q} → X] ∼alg [{p} → X] for any two points p and q in X. Thus, going modulo
algebraic equivalence, ω[{p} → X] is numerically trivial for some ω ∈ L1, implying that
[{p} → X] is numerically trivial. But

∑
γj [{pj} → X] ∼alg ω′[{p} → X] for some

ω′ ∈ L1. Thus,
∑
γj [{pj} → X] is numerically trivial modulo algebraic equivalence. As

we have observed in the proof of Lemma 7.4, a numerically trivial cobordism 0-cycle is

smash-nilpotent. Thus, we only need to show that
∑
ni[ji : Ỹi → X] is smash-nilpotent.

We already know that, modulo algebraic equivalence,
∑
ni[ji : Ỹi → X] is numerically

trivial.
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We proceed by induction on N . Suppose any numerically trivial cobordism 1-cycle on

a product of l curves is smash-nilpotent, for l < N . By Lemma 7.9,
∑
ni[ji : Ỹi → X] is

smash-equivalent to

1

κ

∑
ni

m∑
l=1

rl

( ∑
T∈S\U ,#T=l

ζv
i

T∩S0∗[ji : Ỹi → X]
)
,

where vi = ji(y
i
0), yi0 being a chosen base point of Ỹi. However, by Lemma 7.7, ζv

i

T∩S0∗[ji :

Ỹi → X] ∼alg ζ
v1

T∩S0∗[ji : Ỹi → X]. Thus, modulo algebraic equivalence,∑
ni[ji : Ỹi → X] ∼smash

1

κ

m∑
l=1

rl

( ∑
T∈S\U ,#T=l

ζv
1

T∩S0∗
(∑

ni[ji : Ỹi → X]
))
.

Since ζv
1

T∩S0∗(
∑
ni[ji : Ỹi → X]) is numerically trivial, it is smash-nilpotent by the

induction hypothesis. Hence,
∑
ni[ji : Ỹi → X] is smash-nilpotent. It remains to

check the cases N = 1, 2. The case of a curve is trivial as algebraic and numerical
equivalence coincide for cobordism 1-cycles on curves, by [7, Theorem 9.6.(1)]. Now

consider the case where X is a surface. Let α =
∑
ni[ji : Ỹi → X] +

∑
γj [{pj} → X]

be a numerically trivial cobordism 1-cycle in Ωalg
1 (X)Q. Since CHalg

∗ (X) coincides with
CHnum
∗ (X), we have ϕ(α) =

∑
ni[Yi] = 0, whence [9, Lemma 4.5.3] implies,

∑
ni[ji :

Ỹi → X] =
∑
βl[{p′l} → X]. Thus, α = ω[{p} → X] ∈ Ωalg

1 (X)Q. This shows [{p} → X]
is numerically trivial, hence smash-nilpotent by the argument above. Therefore, α is
smash-nilpotent. �

Corollary 7.11. Let Y be a smooth projective variety and let h : X = C1 × C2 × · · · ×
CN → Y be a dominant morphism. Then, numerical equivalence and smash equivalence
coincide for cobordism 1-cycles on Y .

Proof. Let L be a relatively h-ample line bundle on X. Let r := N − dim(Y ) be
the relative dimension of h. Now, consider h∗ (c1(L)r) ∈ Ω0(Y )Q. Note that since
deg (h∗(c1(L)r)) ∈ Z, if deg (h∗(c1(L)r)) = 0, then ϕ (h∗(c1(L)r)) = 0 ∈ CH0(Y ), which
is not the case since L is relatively h-ample. Denote d := deg (h∗(c1(L)r)). Thus, by the
degree formula [9, Theorem 4.4.7],

h∗ (c1(L)r) = d[IdY ] +
∑
Z⊂Y

codimY Z>0

ωZ [Z̃ → Y ] with Z̃ smooth and birational over Z.

Now, let α ∈ Ω1(Y )Q be numerically equivalent to 0. Since X and Y are smooth, h is
l.c.i.Thus, we may consider the pullback h∗α. Note that by the projection formula,

h∗ (c1(L)r · h∗α) = h∗ (c1(L)r)α = dα+
∑

codimY Z=1
ωZ∈L1

ωZ [Z̃ → Y ] · α.

But, [Z̃ → Y ] · α ∈ Ω0(Y )Q and is numerically trivial. We observed in the proof of
Lemma 7.4 that a numerically trivial cobordism 0-cycle on a smooth projective variety
is smash-nilpotent. Also, c1(L)r ·h∗α being a numerically trivial cobordism 1-cycle on X,
is smash-nilpotent by Theorem 7.10. Thus, h∗ (c1(L)r · h∗α) is smash-nilpotent, which
implies dα, and hence α, is smash-nilpotent since d 6= 0. �
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