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Abstract. A set S of integers is a B3-set if all the sums of the form a1 + a2 + a3, with a1, a2

and a3 ∈ S and a1 ≤ a2 ≤ a3, are distinct. We obtain asymptotic bounds for the number of B3-sets

of a given cardinality contained in the interval [n] = {1, . . . , n}. We use these results to estimate

the maximum size of a B3-set contained in a typical (random) subset of [n] of a given cardinality.

These results confirm conjectures recently put forward by the authors [On the number of Bh-sets,

submitted].

1. Introduction4

Let h ≥ 2 be an integer. A set S of integers is a Bh-set if for any z there is at most one5

sequence a1 ≤ · · · ≤ ah satisfying z = a1 + · · ·+ ah if we require that ai ∈ S for every i = 1, . . . , h.6

The study of Bh-sets goes back to Sidon [14], who asked how large B2-sets, or Sidon sets, can be7

if one imposes that they should be subsets of [n] = {1, . . . , n}. Let8

Fh(n) = max{|S| : S ⊂ [n] is a Bh-set}. (1)

In the case addressed by Sidon, that is, for h = 2, results of Chowla, Erdős, Singer, and Turán [3,9

5, 6, 15] from the 1940s tell us that F2(n) = (1 + o(1))
√
n. The case of general h is less well10

understood. Bose and Chowla [1] showed that Fh(n) ≥ (1 + o(1))n1/h for h ≥ 3, while an easy11

argument gives that, for every h ≥ 3 and large n,12

Fh(n) ≤ (h · h! · n)1/h ≤ h2n1/h. (2)

Note that, for h = 3, the first inequality in (2) gives that F3(n) ≤ 3n1/3 for all large enough n. For13

general h, successively better bounds of the form Fh(n) ≤ chn
1/h have been obtained. The latest14

bounds are due to Green [7], who proved that15

c3 < 1.519, c4 < 1.627 and ch ≤
1

2e

(
h+

(
3

2
+ o(1)

)
log h

)
, (3)

where o(1) → 0 as h → ∞. For a wealth of material on Sidon sets and on Bh-sets, the reader is16

referred to the classical monograph of Halberstam and Roth [8] and to a survey by O’Bryant [12].17
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A related problem to bounding Fh(n) is the problem of estimating how many Bh-sets [n] contains.18

In fact, this problem was raised by Cameron and Erdős [2] in 1990 for h = 2. Let us introduce the19

following definition.20

Definition 1.1 (Zh(n), Zh(n, s)). For non-negative integers 1 ≤ s ≤ n, let21

Zh(n, s) =
∣∣{S ⊂ [n] : |S| = s and S is a Bh-set

}∣∣. (4)

Furthermore, let Zh(n) =
∑

s Zh(n, s).22

In view of the fact that Fh(n) = Θ(n1/h), one sees that c′hn
1/h ≤ logZh(n) ≤ Chn

1/h log n for23

some positive constants c′h and Ch. One now knows that, in fact,24

logZh(n) ≤ C ′hn1/h (5)

for some constant C ′h. The case h = 2 of (5) is proved in [11] (see also [13]), and the arbitrary h case25

is dealt with in [4]. As it turns out, to establish (5), we considered the more refined question of esti-26

mating Zh(n, s). Roughly speaking, we obtained good bounds for Zh(n, s) for s ≥ n1/(h+1)(log n)227

and derived (5) summing over all relevant s (see [4] for details).28

The problem of estimating Zh(n, s) for the whole range of s is interesting in its own right, and29

has an application to a certain problem in probabilistic combinatorics (we shall come back to this30

application in Sections 2 and 7). To develop a feel for the problem of estimating Zh(n, s), let us31

state lower bounds for this quantity, proved in [4].32

Proposition 1.2 (Lower bounds for Zh(n, s)). The following bounds hold for every h ≥ 2.33

(i) There is a constant c′h > 0 such that, for all n and s, we have34

Zh(n, s) ≥
⌊(

c′hn

sh

)s⌋
. (6)

(ii) For any δ > 0, there is an ε > 0 such that, for any s ≤ εn1/(2h−1) and any large enough n,35

we have36

Zh(n, s) ≥ (1− δ)s
(
n

s

)
. (7)

The lower bound in (6) may be proved coupling Bose and Chowla’s construction [1] and a simple37

product construction. On the other hand, the lower bound in (7) comes from the fact that, for38

s ≤ εn1/(2h−1), a typical s-element subset of [n] becomes a Bh-set after the deletion of a small39

fraction of its elements.40

Now, the lower bound in (7) tells us that, for s ≤ εn1/(2h−1), the trivial upper bound Zh(n, s) ≤41 (
n
s

)
is sharp up to a factor of the form (1 + o(1))s. The problem is, then, to obtain good upper42

bounds for Zh(n, s) for s of order n1/(2h−1) or larger, perhaps coming close to matching (6). We43

believe that this is possible, and put forward such a conjecture in [4], which we reproduce below44

for convenience.45

Conjecture 1.3. Fix an integer h ≥ 2 and a real number δ > 0. For every s ≥ n1/(2h−1)+δ and46

every large enough n, we have47

Zh(n, s) ≤
(

n

sh−δ

)s
. (8)

2



Conjecture 1.3 is proved for h = 2 in [10, 11]. The main result of this paper establishes Conjec-48

ture 1.3 for h = 3.49

Theorem 1.4 (Main result). For every δ > 0, there exists an integer n0 such that if n ≥ n0 and50

n1/5+δ ≤ s ≤ 3n1/3, then51

Z3(n, s) ≤
( n

s3−δ

)s
. (9)

We believe that our methods for proving Theorem 1.4 can eventually be adapted to establish52

Conjecture 1.3 for every h, but the general h case brings considerable new difficulties, and will be53

addressed elsewhere.54

Let us compare the bounds we have for Z3(n, s) as s varies. For s� n1/5, Proposition 1.2(ii) tells55

us that Zh(n, s) is, up to a multiplicative factor of (1− o(1))s, equal to the total number
(
n
s

)
of s-56

element subsets of [n]. In this range, one might therefore say that Bh-sets are ‘relatively abundant’.57

On the other hand, for any given δ > 0, for n1/5+δ ≤ s� n1/3, Theorem 1.4 and Proposition 1.2(i)58

applied for h = 3 determine Z3(n, s) up to a multiplicative factor of the form so(s), and we see that59

the probability that a random s-element subset of [n] is a B3-set is roughly of the form s−(2+o(1))s.60

In this second range, B3-sets are therefore scarcer. Finally, note that, by (2), if s > 3n1/3 and n is61

large, then Z3(n, s) = 0.62

The discussion above tells us that there is a sudden change of behaviour around s0 = n1/5. Indeed,63

roughly speaking, for s considerably larger than this ‘critical’ value s0, we have that Z3(n, s) is of64

the form
(
n/s3−o(1)

)s
; this is in contrast to the fact that, as we have already seen, for s of smaller65

order than s0, we have that Z3(n, s) is of the form (1− o(1))s
(
n
s

)
= (Θ(n/s))s.66

Theorem 1.4 implies a result in probabilistic combinatorics, which confirms the case h = 3 of a67

conjecture put forward in [4]. We shall discuss this corollary of Theorem 1.4 in Section 2.68

Notation and organization of the paper. Throughout this paper we identify a graph with the69

set of its edges. In particular, if G is a graph, then e ∈ G means that e is an edge of G; moreover,70

we write both |G| and e(G) for the number of edges in G. If e = {x, y} is an edge in a graph,71

we sometimes write xy for e. As usual, edges are unordered pairs of vertices; however, if H is a72

bipartite graph with vertex classes A and B, it will be convenient to think of the edge set of H as73

a subset of A×B in the natural way. For a set A ⊂ V (G) we denote by e(A) = eG(A) the number74

of edges in the subgraph induced by A, which is denoted by G[A]. If T is a set, we denote by K(T )75

the complete graph with vertex set T . For a set W ⊂ Z and x ∈ Z the set W + x is defined as the76

set of all numbers w + x with w ∈W .77

We write a � b as shorthand for the statement a/b → 0 as n → ∞. We use the standard O,78

o and Θ-notation (with respect to n → ∞); the implicit constants are always absolute constants.79

We omit floor b c and ceiling d e symbols when they are not essential. We sometimes write a/bc80

for a/(bc). We are mostly interested in large n; in our statements and inequalities we often tacitly81

assume that n is larger than a suitably large constant.82

This paper is organized as follows. In Section 2 we state and prove the result in probabilistic83

combinatorics very briefly alluded to above. The remainder of the paper is devoted to the proof of84

Theorem 1.4, the structure of which is presented in Figure 1. The general approach used in the proof85
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Theorem 1.4

Lemma 4.2 Proposition 3.10 Proposition 3.11 Lemma 4.1

Lemma 5.1 Lemma 3.3 Claim 5.13

Cl. 5.4, 5.5 Claim 5.2 Cor. 5.11 Claim 5.12

Lemma 4.5 Lemma 5.7

Claim 6.2 Cl. 5.8, 5.9, 5.10

Claim 6.3

Key Lemmas

Figure 1. A diagram illustrating the flow of the proof of our main result

is described in Section 3. Section 4 gives some auxiliary lemmas, one of which, Lemma 4.5, plays86

a central technical rôle. The proof of this lemma is given in Section 6. The two main propositions87

that together imply Theorem 1.4 (Propositions 3.10 and 3.11; see Section 3) are proved in Section 5.88

2. Largest B3-sets contained in random sets of integers89

In [10, 11], the cardinality of the largest B2-sets, i.e., Sidon sets, contained in random sets of90

integers was investigated. Given an integer function 0 ≤ m = m(n) ≤ n, let us denote by [n]m an m-91

element subset of [n] chosen uniformly at random from all such sets. Given a set R, let Fh(R) be the92

cardinality of the largest Bh-sets contained in R. We are interested in the random variable Fh([n]m).93

For simplicity, let us suppose m = m(n) = (1+o(1))na for some constant 0 < a < 1. It is proved94

in [10, 11] that, asymptotically almost surely, that is, with probability tending to 1 as n→∞, one95
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has F2([n]m) = nb2+o(1), where96

b2 = b2(a) =


a if 0 ≤ a ≤ 1/3,

1/3 if 1/3 ≤ a ≤ 2/3,

a/2 if 2/3 ≤ a ≤ 1.

(10)

Therefore, F2([n]m) undergoes a sudden change of behaviour at a = 1/3 and at 2/3. Furthermore,97

somewhat unexpectedly, F2([n]m) does not change considerably as we vary a from 1/3 to 2/3. It98

is natural to ask whether a similar result holds for arbitrary h; indeed, in [4], we put forward a99

conjecture that states that this is the case. Theorem 1.4 implies that this conjecture holds for h = 3.100

Our result is as follows.101

Theorem 2.1 (B3-sets contained in random sets of integers). Let 0 ≤ a ≤ 1 be a fixed constant.102

Suppose m = m(n) = (1 + o(1))na. There exists a constant b3 = b3(a) such that, asymptotically103

almost surely, we have104

F3([n]m) = nb3+o(1). (11)

Furthermore,105

b3 = b3(a) =


a if 0 ≤ a ≤ 1/5,

1/5 if 1/5 ≤ a ≤ 3/5,

a/3 if 3/5 ≤ a ≤ 1.

(12)

The piecewise linear function b3 in (12) is given in Figure 2.106

Proof of Theorem 2.1. We shall be somewhat sketchy in the more routine parts of the argument.107

We first observe that one may switch to the so called binomial model [n]p. To be more precise,108

let p = m/n = (1 + o(1))na−1 and put each x ∈ [n] in [n]p with probability p, independently of all109

other elements in [n]. A standard argument tells us that it suffices to prove that F3([n]p) = nb3+o(1)110

with probability 1− o(1/
√
m).111

The required lower bound for F3([n]p) is established in [4]. Since F3([n]p) ≤ |[n]p|, standard112

arguments prove Theorem 2.1 in the range a ∈ [0, 1/5]. We may use Theorem 1.4 to bound the113

random variable F3([n]p) from above, in probability, as follows. The expected number of B3-sets114

of size s in [n]p is psZ3(n, s). For any given δ > 0, Theorem 1.4 implies that, for s ≥ n1/5+δ, this115

expectation is at most116 (
p

n

s3−δ

)s
. (13)

Hence, if (1 + o(1))na = pn� s3−δ, then this expectation is o(1/
√
m). In particular, for every a >117

1/5, with suitably large probability, the largest B3-sets contained in [n]p have cardinality at most118

max
{
n1/5+δ, na/3+δ

}
= nb3(a)+δ.

Since δ > 0 is arbitrary, the result follows. �119
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b3(a)

a

1
3

1
5

1
5

3
5

1

Figure 2. The graph of the piecewise linear function b3 from Theorem 2.1

3. The proof of Theorem 1.4120

Theorem 1.4 follows in a straightforward manner from two propositions, Propositions 3.10121

and 3.11, stated at the end of this section. We need some preparations to be able to state those122

two propositions. The following definition introduces a central object in the proof.123

Definition 3.1 (Collision graph CT ). Given a set T ⊂ [n], we define the collision graph CT on the124

vertex set [n] by letting {a, b} with a, b ∈ [n] and a 6= b be an edge whenever there exist z1, z2, z3,125

z4 ∈ T such that126

a+ z1 + z2 = b+ z3 + z4. (14)

Proposition 3.2. Suppose that S ⊂ [n] is a B3-set. Then for every T ⊂ S, the set S \ T is an127

independent set in CT .128

Proof. Suppose on the contrary that a, b ∈ S \ T with a 6= b satisfies (14) with z1, z2, z3, z4 ∈ T .129

From the fact that S is a B3-set we deduce that the multisets {a, z1, z2} and {b, z3, z4} coincide.130

Since a ∈ S \ T and z3 and z4 ∈ T , we obtain that a = b, which is a contradiction. �131

In view of Proposition 3.2, our general strategy for estimating the number of B3-sets of a given132

size s will be as follows: we first enumerate seed B3-sets T with |T | � s and then we bound the133

number of independent sets in CT for each such T . The following lemma, which is implicit in the134

work of Kleitman and Winston [9] (see also [11, Lemma 3.1]), will be used to bound the number of135

independent sets.136

Lemma 3.3. Let G be a graph on N vertices, let q be an integer and let 0 ≤ β ≤ 1 and R be real137

numbers with138

R ≥ e−βqN. (15)

Suppose139

e(A) ≥ β
(
|A|
2

)
for any A ⊂ V (G) with |A| ≥ R. (16)
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Then, for all integers m ≥ 0, the number of independent sets in G of cardinality q +m is at most140 (
N

q

)(
R

m

)
. (17)

When applying Lemma 3.3, we shall often take R = γN = γ|V (G)| for some number γ > 0.141

Hypothesis (15) then becomes142

eβqγ > 1 (18)

and the bound (17) becomes143 (
|V (G)|
q

)(
γ|V (G)|

m

)
. (19)

In order to prove our main result, Theorem 1.4, we shall enumerate all possible seed sets T144

and show that the corresponding graphs CT are quite dense. In fact, they are dense enough that145

we can apply Lemma 3.3 to establish that the number of extensions of T to a significantly larger146

B3-set S is rather small. More precisely, for every B3-set T we are interested in proving lower147

bounds for eCT (A) for arbitrary but somewhat large A ⊂ [n]. It turns out that we shall need to148

consider two separate cases, depending on the structure of T . We now need some definitions.149

Let G be a graph on the vertex set T ⊂ [n] and let z ∈ [n] be arbitrary. Denote by G2 = G×G150

the Cartesian product of the edge set of G with itself.151

Definition 3.4 (Representation count RG). Let152

RG(z) =
∣∣{(z1z2, z3z4) ∈ G2 : z = (z1 + z2)− (z3 + z4), all zis distinct

}∣∣. (20)

Clearly RG(−z) = RG(z) for every z. In what follows, T will always be a B3-set, and hence153

we shall always have RG(0) = 0. Finally, we mention that we shall only be interested in RG(z)154

for z ∈ {−n+ 1, . . . ,−1} ∪ {1, . . . , n− 1} ⊂ [−n, n].155

Definition 3.5 (Collision multigraph C̃G). Let C̃G be the multigraph with vertex set [n] in which156

the multiplicity of each {a, b} ∈
(
[n]
2

)
is exactly RG(b− a).157

The reason we introduce this multigraph version of CT is that it will be easier to estimate from158

below the number of multi-edges that are induced by subsets A ⊂ [n]. We can then establish159

bounds for CT through the following proposition.160

Proposition 3.6. For every non-empty graph G ⊂
(
T
2

)
and A ⊂ [n] we have161

eCT (A) max
z∈[−n,n]

RG(z) ≥ eC̃G(A). (21)

Proof. Note that {a, b} ∈ C̃G[A] implies that RG(b− a) ≥ 1 which means that b− a = (z1 + z2)−162

(z3 + z4) for some zi ∈ T , and thus {a, b} ∈ CT [A] (see Definition 3.1). The proposition follows. �163

A substantial part of this paper is dedicated to proving the existence of suitable graphs G for164

which we can bound maxz∈[−n,n]RG(z) and then apply Proposition 3.6.165

Remark 3.7. Note that, in the definition of RG(z), the elements z1, z2, z3 and z4 are required166

to be all distinct. This restriction allows us to avoid the “degenerate” case in which z = z1 − z3167
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for z1, z3 ∈ T . In this case, for every x ∈ NG(z1) ∩ NG(z3) we have z = (z1 + x) − (z3 + x) with168

(z1x, z3x) ∈ G2, which means that, without the restriction, the value of RG(z) could be as large169

as |NG(z1) ∩NG(z3)|, which, in turn, could be as large as |T | − 2.170

We now define a quantity QG that will help us bound maxz∈[−n,n]RG(z).171

Definition 3.8 (Moment generating function of RG). Let172

QG =
∑
z∈[n]

expRG(z). (22)

As already observed, RG vanishes at 0 for any B3-set T and is an even function. Thus173

max
z∈[−n,n]

RG(z) = max
z∈[n]

RG(z) ≤ logQG. (23)

In view of the definitions above and Proposition 3.6 and Lemma 3.3, our goal is to enumerate B3-174

sets T ⊂ [n] and graphs G ⊂
(
T
2

)
such that logQG is not too large, while at the same time eC̃G(A)175

is large for every “large enough” set A ⊂ [n]. This discussion motivates our next definition.176

Definition 3.9 (Bounded set). Let177

ξ =
1

106 log n
and αi = ξ2

i+1−1 for i ≥ 0, (24)

and let ε > 0 be a fixed constant. Given λ ≥ 1 and a non-negative integer i, a set T is said to178

satisfy Pλ,ε,i if it is a B3-set and there exists a graph Gi on the vertex set T such that179

(a) e(Gi) ≥
(
1− αi

)(|T |
2

)
,180

(b) QGi ≤ en exp

(
λniε

|T |∑
j=1

1

j

)
.181

A set T is called (λ, ε)-bounded if it satisfies Pλ,ε,i for i = 0, 1, . . . , d1/εe.182

We now summarize our strategy for proving Theorem 1.4. Fix a positive constant δ > 0. We183

may and shall suppose that δ ≤ 1. Let ε = δ/13 and note that184

1

5− 25ε
≤ 1

5
+ δ and 3− 13ε = 3− δ ≤ 3− 12ε. (25)

Let s be an integer satisfying the assumptions of the theorem. In particular, s ≥ n1/(5−25ε) by our185

choice of ε. Our goal is to estimate the number of B3-sets of cardinality s. For the remainder of186

the paper, we let187

λ = λ(s) =
s5−25ε

n
≥ 1. (26)

We classify the B3-sets of size s into two types, depending on whether or not the cardinality of their188

largest (λ, ε)-bounded subsets is greater than s1−6ε. We shall prove the following two propositions,189

estimating the number of B3-sets of cardinality s of each type separately. These two propositions190

together easily imply Theorem 1.4.191

Proposition 3.10. Let ε > 0, let n be a sufficiently large integer, and let s ∈ [n1/(5−25ε), 3n1/3]192

be a given integer. Let λ be as defined in (26). The number of B3-sets of cardinality s contained193
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in [n] that contain a (λ, ε)-bounded set larger than s1−6ε is at most194 (
n

s3−12ε−o(1)

)s
. (27)

Proposition 3.11. Let ε > 0, let n be a sufficiently large integer, and let s ∈ [n1/(5−25ε), 3n1/3]195

be a given integer. Let λ be as defined in (26). The number of B3-sets of cardinality s contained196

in [n] that do not contain any (λ, ε)-bounded set larger than s1−6ε is at most197 (
n

s3−8ε−o(1)

)s
. (28)

Before we proceed with the formal proofs, let us briefly discuss our general approach. Every B3-198

set with s elements that contains a (λ, ε)-bounded set with at least s1−6ε elements will be shown199

to contain a set T with |T | = s1−6ε which satisfies P100λ,ε,0 (see Lemma 4.2). Using Lemma 3.3, we200

shall be able bound the number of possible extensions of any such set T to a B3-set with s elements.201

This is because the graph CT will be shown to satisfy an appropriate local density condition (see202

Lemma 5.1). Showing this is the main difficulty in this part of the argument. The details are given203

in Section 5.1.204

The proof of Proposition 3.11 is somewhat more complicated. First we show that any B3-set205

of cardinality s must contain a (λ, ε)-bounded subset of size at least s1/7 (see Lemma 4.1). In206

particular, every such B3-set contains a maximal (λ, ε)-bounded subset with at least s1/7 elements.207

Our strategy will therefore be to estimate, for each B3-set T with |T | < s1−6ε, the number of B3-208

sets S such that T ⊂ S and T is a maximal (λ, ε)-bounded subset of S. The maximality of T will209

be shown to imply that the set of elements that can appear in S \ T admits a certain structure210

(see Definition 5.6 and Lemma 5.7). More concretely, we shall show that S \ T ⊂ T̃ for some set211

T̃ ⊂ [n] such that the graph CT [T̃ ] satisfies certain local density conditions that allow us to use212

Lemma 3.3 to bound the total number of such possible extensions S of T appropriately (the precise213

local density condition is given in Corollary 5.13)214

The remainder of the paper is devoted to proving Propositions 3.10 and 3.11.215

4. Auxiliary lemmas216

We now give three auxiliary lemmas. The two lemmas in Section 4.1 are quite simple, while the217

lemma given in Section 4.2, Lemma 4.5, is somewhat more technical. However, Lemma 4.2 will be218

one of the key lemmas that will allow us to prove local density results for certain induced subgraphs219

of the collision graph CT .220

4.1. Bounded sets. Our first lemma states that for any λ ≥ 1 and any ε > 0, every B3-set S221

contains a (λ, ε)-bounded subset whose size is at least a small power of |S|.222

Lemma 4.1. For any λ ≥ 1, ε > 0, and B3-set S ⊂ [n] there exists a (λ, ε)-bounded set T ⊂ S of223

cardinality |T | ≥ |S|1/7.224

Proof. Observe that S contains a B4-set with d|S|1/7e elements. Indeed, one may construct such225

set greedily by starting from an empty set and sequentially adding to it elements of S. As long as226
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the constructed set T has fewer than |S|1/7 elements, one can always add to T an arbitrary element227

from the (non-empty) set S \ (4T − 3T ), which assures that T remains a B4-set.228

Hence, we may choose a B4-set T ⊂ S with |T | = d|S|1/7e. Let G be the complete graph on the229

vertex set T . The fact that T is a B4-set implies that RG(z) ∈ {0, 1} for every z. Indeed, if some230

(z1z2, z3z4), (z
′
1z
′
2, z
′
3z
′
4) ∈ G2, with |{z1, z2, z3, z4}| = 4 and |{z′1, z′2, z′3, z′4}| = 4, satisfy231

(z1 + z2)− (z3 + z4) = z = (z′1 + z′2)− (z′3 + z′4), (29)

then232

z1 + z2 + z′3 + z′4 = z′1 + z′2 + z3 + z4. (30)

Since T is a B4-set, we must have, as multisets,233

{z1, z2, z′3, z′4} = {z′1, z′2, z3, z4}. (31)

This forces {z1, z2} = {z′1, z′2} and {z3, z4} = {z′3, z′4}. Consequently RG(z) ≤ 1.234

In particular, QG is a sum of n terms which are either e0 = 1 or e1 = e. Therefore,235

QG ≤ en. (32)

Clearly, Gi = G = K(T ) satisfies both (a) and (b) of Definition 3.9 for any i ≥ 0, λ ≥ 1, and ε > 0.236

Hence, T is a (λ, ε)-bounded set. �237

The second lemma allows one to pass to subsets of a convenient cardinality when dealing with238

(λ, ε)-bounded sets. Moreover, we shall see that we may carry out this procedure without signifi-239

cantly affecting the “boundedness” parameters.240

Lemma 4.2. Let λ ≥ 1 and an integer i ≥ 0 be given and suppose that T ⊂ [n] satisfies Pλ,ε,i.241

For every m satisfying n1/100 ≤ m ≤ |T |, there exists T ′ ⊂ T with |T ′| = m such that T ′ satis-242

fies P100λ,ε,i.243

Proof. Let Gi be a graph whose existence is asserted in the definition of Pλ,ε,i. A simple averaging244

argument shows that there exists a T ′ ⊂ T with |T ′| = m such that245

eGi(T
′) ≥ e(Gi)

(
|T | − 2

m− 2

)(
|T |
m

)−1
= e(Gi)

(
m

2

)(
|T |
2

)−1
. (33)

Taking G′i = Gi[T
′] and recalling that Gi satisfies (a) of Definition 3.9 yields246

e(G′i) ≥
(
1− αi

)(|T |
2

)(
m

2

)(
|T |
2

)−1
=
(
1− αi

)(m
2

)
.

(34)

Using the facts that n1/100 < m ≤ |T | ≤ 3n1/3, that Gi satisfies (b) of Definition 3.9, and well-known247

estimates for the harmonic numbers, we obtain, for every large enough n,248

QG′i ≤ QGi ≤ en exp

(
λniε

|T |∑
j=1

1

j

)
≤ en exp

(
100λniε

|T ′|∑
j=1

1

j

)
. (35)

It follows from (34) and (35) that T ′ satisfies P100λ,ε,i. �249
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4.2. A technical lemma on the local density of CT . We now state a key technical lemma that250

will help us give lower bounds for the local density of the collision graph CT . We need the following251

definition.252

Definition 4.3 (Bipartite graph HT (A,B)). Given a set T ⊂ [n], we define the graph HT on the253

vertex set ([n] × {1}) ∪ ([2n] × {2}) by letting {(a, 1), (b, 2)} be an edge whenever b − a ∈ T . For254

A ⊂ [n] and B ⊂ [2n], we denote by HT (A,B) the subgraph of HT induced by (A×{1})∪ (B×{2}).255

Remark 4.4. In the definition above, we wish to have the disjoint union of [n] and [2n] as the256

vertex set of HT . The standard way of producing such a disjoint union involves the use of the257

Cartesian product, as above. In what follows, we shall be less formal and we shall refer to vertices258

as a ∈ A, b ∈ B, etc, instead of (a, 1) ∈ A× {1}, (b, 2) ∈ B × {2}, etc.259

The following technical lemma allows us to obtain a lower bound on eCT (A) in terms of the260

edge-density of the graph HT (A,B) for every sufficiently large B3-set T that satisfies Pλ,ε,i. When261

applying this lemma, we have to come up with a suitable set B (see the proofs of Claim 5.2 and262

Corollary 5.11). Recall that ξ and the αi are defined in 24.263

Lemma 4.5. The following holds for every integer i ≥ 0, and every ε > 0, λ ≥ 1, D ≥ 5000264

and δ ∈ (0, 1] satisfying δ2 ≥ αi/100ξ. Suppose that a set T ⊂ [n] with at least n1/100 elements265

satisfies Pλ,ε,i. Moreover, suppose that A ⊂ [n] and B ⊂ [2n] are such that the graph H = HT (A,B)266

satisfies267

(I) every vertex of A has degree at least δ |T |;268

(II) the average degree of the vertices in B is D.269

Then270

eCT (A) = Ω

(
δ2|A|D2|T |2

λniε(log n)3

)
. (36)

The proof of Lemma 4.5 will be given in Section 6.271

5. Proofs of Propositions 3.10 and 3.11272

5.1. Sets containing a large bounded subset. Let us now prove Proposition 3.10, which deals273

with the case in which the “seed” set contains a (λ, ε)-bounded set of cardinality greater than n1−6ε.274

Our main tools will be Lemma 3.3 and the following estimate on the number of edges induced by275

small sets of vertices in the collision graph CT when T is a bounded set.276

Lemma 5.1. There exists an absolute constant C > 0 such that the following holds. If T satisfies277

P100λ,ε,0 and |T | ≥ n1/100, then for any A ⊂ [n] with |A| ≥ (C/|T |2)n, we have278

eCT (A) = Ω

(
|A|2|T |4

λn(log n)3

)
. (37)

We give the proof of Proposition 3.10 before proving Lemma 5.1.279

Proof of Proposition 3.10. We wish to estimate the number of B3-sets S of size s that contain a280

(λ, ε)-bounded subset with more than s1−6ε elements. Suppose that T ⊂ S is a (λ, ε)-bounded281
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set with |T | ≥ s1−6ε. By Definition 3.9, T must satisfy Pλ,ε,i for i = 0. By Lemma 4.2, we may282

assume without loss of generality that the cardinality of T is exactly s1−6ε and T satisfies P100λ,ε,0.283

Lemma 5.1 then implies that CT satisfies (16) with284

R = γn =
Cn

|T |2
=

Cn

s2−12ε
(38)

and285

β = Ω

(
|T |4

λn(log n)3

)
(26)
= Ω

(
(s1−6ε)4

s5−25ε(log n)3

)
= Ω

(
1

s1−ε(log n)3

)
. (39)

Take286

q = (log n)/β = O
(
(log n)4s1−ε

)
= o(s). (40)

Note that (18) is satisfied. Hence, Proposition 3.2 and Lemma 3.3 yield that the number of B3-sets287

of cardinality s that contain a set T satisfying P100λ,ε,0 with cardinality s1−6ε is at most288 (
n

s1−6ε

)(
n

q

)(
Cn/s2−12ε

s− q − s1−6ε

)
≤ ns

(
Ce

s2−12ε(s− q − s1−6ε)

)s−q−s1−6ε

= ns
{(

Ce

s2−12ε(1− o(1))s

)(s−q−s1−6ε)/s}s
=

{
n

(
Ce

(1− o(1))s3−12ε

)1−o(1)}s
=

(
n

s3−12ε−o(1)

)s
.

(41)

By the discussion above, this completes the proof of Proposition 3.10. �289

It now remains to prove Lemma 5.1.290

Proof of Lemma 5.1. Let C = 109. We shall show that this choice of C will do. Suppose that T291

satisfies P100λ,ε,0 and let A ⊂ [n] with |A| ≥ Cn/|T |2 be arbitrary. Recall that, by definition, there292

exists a graph G0 ⊂
(
T
2

)
satisfying (a) and (b) of Definition 3.9 with i = 0 and λ replaced by 100λ.293

Our goal is to establish a lower bound on eC̃G0
(A) and then apply Proposition 3.6 to obtain the294

lemma. Let H = HT (A, [2n]) (recall Definition 4.3). Let c = 10−4 and let295

W =
{
w ∈ [2n] : degH(w) ≥ c |T |2|A|/n

}
(42)

(the vertices in W have very large degree). Notice that, since |H| ≤ |A| |T |, we have |W | ≤ n/(c|T |).296

Also, set297

A′ = {a ∈ A : |NH(a) ∩W | < 0.1 |T |}. (43)

Claim 5.2. If |A′| ≤ |A|/2, then the conclusion of the lemma holds. More precisely,298

eCT (A \A′) = Ω

(
δ2|A|2|T |4

λn(log n)3

)
. (44)

Proof. We apply Lemma 4.5 to the graph H ′ = HT (A \ A′,W ) ⊂ H with i = 0, B = W , 100λ in299

place of λ, and A \A′ in place of A. We proceed in steps.300

(i) Set δ = 0.1 and notice that δ2 = 0.01 = α0/100ξ, and thus δ satisfies the condition of the301

lemma.302
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(ii) We assumed that T satisfies P100λ,ε,0 and that |T | ≥ n1/100, and therefore T satisfies the303

conditions of the lemma, with 100λ in place of λ.304

(iii) From the definition of A′ in (43), it follows that degH(a) = |NH(a) ∩W | ≥ δ |T | for all305

a ∈ A \A′.306

(iv) Finally, the average degree of the vertices in W is307

D =
|H ′|
|W |

≥ |A|
2
· 0.1 |T |
|W |

≥ c |A| |T |2

20n
. (45)

As C = 109, c = 10−4 and |A| ≥ Cn/|T |2, we have D ≥ cC/20 = 5000.308

From Lemma 4.5, with D = Ω(|A| |T |2/n) as in (45) and |A| ≥ Cn/|T |2, we conclude that309

eCT (A \A′) = Ω

(
δ2
|A|3|T |6

λn2(log n)3

)
= Ω

(
δ2|A|2|T |4

λn(log n)3

)
, (46)

as required. �310

In view of Claim 5.2, let us assume that |A′| ≥ |A|/2.311

Definition 5.3 (Auxiliary graph Aux). Let Aux be a bipartite graph with classes consisting of A′312

and a disjoint copy of [3n] as follows. For x ∈ A′, the neighbors of x in Aux are all elements313

of the form y = x + z1 + z2 for some z1z2 ∈ G0 such that x + z1, x + z2 /∈ W . In other words,314

z1z2 ∈ G0[T \ (W − x)].315

Suppose that a pair of distinct x, x′ ∈ A′ is connected by a path of length two in Aux. We316

classify this path as follows:317

non-degenerate path: if the path is of the form318

x, x+ z1 + z2 = x′ + z3 + z4, x
′ with (z1z2, z3z4) ∈ G2

0 and zis distinct;

degenerate path: if the path is of the form319

x, x+ z1 + z = x′ + z2 + z, z′ with (z1z, z2z) ∈ G2
0. (47)

Note that the two cases above are exhaustive since elements in an edge of G0 are necessarily distinct320

(i.e., G0 has no loops). Denote by d(x, x′) the number of degenerate paths between x and x′ and321

by p(x, x′) the total number of 2-paths connecting them.322

Note that a non-degenerate path between x, x′ corresponds to an ordered pair of edges of G0323

counted by RG0(x′ − x) = RG0(x− x′) (see (20)). Therefore,324

RG0(x− x′) ≥ p(x, x′)− d(x, x′). (48)

(We have an inequality instead of equality in (48) above because, owing to the definition of Aux,325

the first edge of the pair must come from G0[T \ (W − x)] and the second edge of the pair from326

G0[T \(W−x′)], and hence not all pairs counted by RG0(x−x′) yields appropriate 2-paths in Aux.)327

In order to estimate eC̃G0
(A′) =

∑
x,x′∈A′ RG0(x − x′) we bound the number of degenerate paths328

and estimate the total number of 2-paths. Here and in what follows, we write
∑

x,x′∈A′ for the sum329

over all unordered pairs {x, x′} ⊂ A (x 6= x′).330
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Aux

A′

[3n]

x x′

x+ z1 + z = x′ + z2 + z

HT (A, [2n] \W )

x x′

x+ z1 = x′ + z2

φ

Figure 3. Owing to the definition of Aux, we know that x+ z1 = x′+ z2 does not
belong to W . Consequently, (x, x + z1, x

′) is a two-path in HT (A, [2n] \W ), and
hence a member of P.

Let D denote the set of all degenerate paths in Aux, so that |D| =
∑

x,x′∈A′ d(x, x′). Also, let P331

be the set of all paths of length two in HT (A′, [2n]\W ) with both endpoints in A′. We will provide332

an upper bound for |D| by defining a map φ : D → P, estimating |P| and bounding |φ−1(P )| for333

all P ∈ P.334

Claim 5.4. We have335

|D| ≤ c |A|2|T |4

n
.

Proof. First we define a map φ : D → P as follows. For a degenerate path in Aux between x, x′ ∈ A′336

as in (47), we infer that x, x′ are connected by a path of length two in H (i.e., x, x+ z1 = x′ + z2,337

x′). Given the definition of Aux, we also know that x+z1 = x′+z2 /∈W . Let φ map the degenerate338

path x, x+z1 +z = x′+z2 +z, x′ to the path x, x+z1 = x′+z2, x
′, which indeed belongs to P—see339

Figure 3. Since there are at most |T | choices for z ∈ T such that both {z1, z} and {z2, z} are edges340

in G0, we conclude that |φ−1(P )| ≤ |T | for any P ∈ P. Hence |D| ≤ |T | |P|.341

The cardinality of P can be bounded from above by |A′| |T | · c |T |2|A|/n. Indeed, there are at342

most |A′| |T | choices for the first edge of the path and since the path’s middle vertex, which is343

determined by the first edge, is not in W , it follows from (42) that the number of choices for the344

second edge is at most c |T |2|A|/n. Consequently,345

|D| ≤ |T | |P| ≤ |T | · |A′| |T | · c |T |
2|A|
n

≤ c |A|2|T |4

n
. �

Claim 5.5. The number of 2-paths between vertices of A′ in Aux, namely the sum
∑

x,x′∈A′ p(x, x
′),346

is at least347

|A|2|T |4

7× 64n
. (49)

Proof. The total number of 2-paths between pairs of vertices of A′ in Aux can be bounded below348

by using Jensen’s inequality:349 ∑
y∈[3n]

(
degAux(y)

2

)
≥ 3n

(
|Aux|/3n

2

)
≥ |Aux|2

7n
. (50)

The claim will follow after we obtain a lower bound for |Aux|.350

Note that by construction (see Definition 5.3) and the fact that T is a B3-set, the degree of351

any x ∈ A′ in Aux is precisely eG0(T \ (W − x)). Since |NH(x) ∩ W | < 0.1 |T | and NH(x) =352
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T + x ⊂ [2n], we have353

|T \ (W − x)| = |T | − |T ∩ (W − x)| = |T | − |(T + x) ∩W |

= |T | − |NH(x) ∩W | > 0.9 |T |.
(51)

Since G0 satisfies (a) with i = 0, we must have354

degAux(x) = eG0

(
T \ (W − x)

)
≥
(
|T \ (W − x)|

2

)
− |K(T ) \G0| ≥

(
0.9 |T |

2

)
− α0

(
|T |
2

)
>
|T |2

4
.

(52)

Since x ∈ A′ was arbitrary, we have |Aux| ≥ |A′||T |2/4.355

Therefore356 ∑
x,x′∈A′

p(x, x′) ≥ |Aux|2

7n
≥ (|A′| |T |2/4)2

7n
. (53)

Since |A′| ≥ |A|/2, the claim follows. �357

It follows from Claims 5.4 and 5.5, together with (48) and c = 1/10000, that358

eC̃G0
(A) ≥ eC̃G0

(A′)
(48)

≥
∑

x,x′∈A′

(
p(x, x′)− d(x, x′)

) Cl. 5.4&5.5
≥ |A|2 |T |4

500n
. (54)

Since QG0 satisfies (b) with i = 0, and 100λ ≥ 1, we have359

QG0 ≤ en exp
(
100λ(1 + log |T |)

)
≤ exp(200λ log n). (55)

It follows by (23) and Proposition 3.6 that360

eC(A) ≥
eC̃G0

(A)

logQG0

≥
eC̃G0

(A)

200λ log n
≥ |A|2 |T |4

105λn log n
. (56)

Hence Lemma 5.1 is proved. �361

5.2. Sets not containing a large bounded subset. We now turn to the proof of Proposi-362

tion 3.11, that is, we enumerate B3-sets such that all of its (λ, ε)-bounded subsets have fewer363

than s1−6ε elements. We shall do this by bounding, for any given (λ, ε)-bounded set T , the number364

of ways one can extend T to a B3-set S in such a way that T remains a maximal (λ, ε)-bounded365

subset of S.366

In what follows, we show that extensions preserving a (λ, ε)-bounded set T as maximal must367

admit certain structural properties that severely restrict the number of possible extensions.368

Definition 5.6. Given a (λ, ε)-bounded set T , let369

T̃ =
{
x ∈ [n] : T ∪ {x} is a B3-set but not a (λ, ε)-bounded set

}
. (57)

Also, for i ∈ {0, 1, . . . , d1/εe}, let370

T̃i =
{
x ∈ T̃ : i is the smallest index such that T ∪ {x} does not satisfy Pλ,ε,i

}
. (58)
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Note that, by definition, if a B3-set S contains T and T is a maximal (λ, ε)-bounded subset of S,371

then S \ T ⊂ T̃ . Note that, clearly, the sets T̃i partition T̃ and372

T̃ =

d1/εe⋃
i=0

T̃i. (59)

The next lemma gives us important information on the sets T̃i. The sets Bi, whose existence is373

asserted in this lemma, will be crucial for us to prove that CT [T̃i] satisfies a local density condition,374

as specified in Corollary 5.11. The Bi will be used in an application of Lemma 4.5 in the proof of375

Corollary 5.11.376

Lemma 5.7. Let i ∈ {0, 1, . . . , d1/εe} and suppose that a set T satisfies Pλ,ε,i. There exists a377

set Bi = Bi(T ) ⊂ [2n] with378

|Bi| <
e2(e+ 1)|T |4

λni·ε
(60)

such that, for every x ∈ T̃i,379

|(T + x) ∩Bi| ≥ αi |T |. (61)

Proof. Since T satisfies Pλ,ε,i, there exists a graph Gi on the vertex set T that satisfies (a) and (b)380

of Definition 3.9. Let us fix such a graph Gi for the remainder of the proof of Lemma 5.7. For381

technical reasons, it will be convenient to introduce the following definition: for each w ∈ [2n] and382

z ∈ [n], set383

fi(w, z) =

1 if z = ±(w − a− b) for some {a, b} ∈ Gi,

0 otherwise.
(62)

Also, for each w ∈ [2n], let384

Ui,w =
∑
z∈[n]

(expRGi(z)) e
2fi(w, z). (63)

In what follows, we will show that the set Bi defined by385

Bi =

{
w ∈ [2n] : Ui,w >

λniεQGi

(e+ 1)|T |(|T |+ 1)

}
(64)

satisfies the conclusions of the lemma.386

Claim 5.8. We have |Bi| < e2(e+ 1)|T |4/(λni·ε).387

Proof. We start by proving the following inequality, which will be used shortly:388

for any z ∈ [n], we have
∑
w∈[2n]

fi(w, z) ≤ 2 e(Gi). (65)

This inequality holds since each edge {a, b} of Gi may only contribute to the sum on the left hand389

side with the two entries fi(a+ b+ z, z) and fi(a+ b− z, z). Now observe that390 ∑
w∈[2n]

Ui,w =
∑
w∈[2n]

∑
z∈[n]

(expRGi(z)) e
2fi(w, z)

= e2
∑
z∈[n]

expRGi(z)
∑
w∈[2n]

fi(w, z) ≤ e2QGi2 e(Gi) < e2 |T |(|T | − 1)QGi . (66)
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On the other hand,391 ∑
w∈[2n]

Ui,w ≥
∑
w∈Bi

Ui,w ≥ |Bi|
λni·εQGi

(e+ 1)|T |(|T |+ 1)
, (67)

which implies (60), concluding the proof of the claim. �392

It remains to prove that for every x ∈ T̃i, we have |(T +x)∩Bi| ≥ αi |T |. Fix an arbitrary x ∈ T̃i.393

For y ∈ T , denote by Gi ∪ {xy} the graph with vertex set V (Gi)∪ {x} and edge set E(Gi)∪ {xy}.394

Let395

Di,xy = QGi∪{xy} −QGi . (68)

Expanding, we obtain396

Di,xy =
∑
z∈[n]

exp
(
RGi(z)

){
exp
(
RGi∪{xy}(z)−RGi(z)

)
− 1
}

︸ ︷︷ ︸
(‡)

. (69)

The following claim relates Di,xy and Ui,x+y.397

Claim 5.9. We have398

Di,xy ≤ Ui,x+y. (70)

Proof. Let w = x + y. We shall prove the claim by showing that every term in the sum (69) is399

bounded above by its corresponding term in the sum (63) defining Ui,w. Let z ∈ [n] be arbitrary.400

Note that any difference between RGi∪{xy}(z) and RGi(z) must be either due to a pair (xy, z1z2),401

z1z2 ∈ Gi, satisfying402

z = (x+ y)− (z1 + z2) = w − (z1 + z2), (71)

or due to a pair (z1z2, xy) such that z = (z1 + z2) − w, where, in both cases, we require {x, y} ∩403

{z1, z2} = ∅. If fi(w, z) = 0 then there are no such pairs and we must have RGi∪{xy}(z) = RGi(z).404

In this case, the term (‡) in (69) is 0.405

Since T is a B3-set, there can be at most one edge {a, b} ∈ Gi such that z = w − a − b and406

at most one edge {a′, b′} ∈ Gi for which −z = (x + y) − a′ − b′. Therefore, we always have407

RGi∪{xy}(z) ≤ RGi(z) + 2. Consequently, in this case408

RGi(z) ≤ RGi∪{xy}(z) ≤ RGi(z) + 2. (72)

In particular, the term (‡) in (69) is 0, e− 1 or e2 − 1.409

To summarize, regardless of whether fi(w, z) is 0 or 1, we have410

(‡) ≤ e2fi(w, z). (73)

Therefore,411

Di,xy ≤
∑
z∈[n]

(expRGi(z)) e
2fi(w, z) = Ui,w = Ui,x+y. �

Next we show that the effect in the moment function caused by adding multiple edges incident412

to x to the graph Gi is essentially the sum of the effects of each edge xy being added.413
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Claim 5.10. For any Y ⊂ T , letting G′i = Gi ∪ {xy : y ∈ Y }, we have414

QG′i −QGi ≤ (e+ 1)
∑
y∈Y

Di,xy. (74)

Proof. Since G′i\Gi = {xy : y ∈ Y } contains only edges incident to x, the difference RG′i(z)−RGi(z)415

equals the number of solutions to z = ±(x + y − a − b) for some y ∈ Y and {a, b} ∈ Gi with416

{x, y} ∩ {a, b} = ∅. Let us bound the number of such solutions. To this end, suppose that417

z = x+ y − a− b = x+ y′ − a′ − b′ (75)

for y, y′ ∈ Y and {a, b}, {a′, b′} ∈ Gi with {x, y} ∩ {a, b} = ∅ and {x, y′} ∩ {a′, b′} = ∅. Then418

y+a′+b′ = y′+a+b and, since these elements come from the B3-set T , we conclude that {y, a′, b′} =419

{y′, a, b}. It follows that y = y′ and {a, b} = {a′, b′}. Hence, there is at most one solution420

to z = x+y−a−b and at most one solution to −z = x+y−a−b. Consequently, RG′i(z)−RGi(z) ≤ 2421

and422

∆z := expRG′i(z)− expRGi(z) ≤ (expRGi(z)) (e2 − 1). (76)

Moreover, RG′i(z) > RGi(z) only if RGi∪{xy∗}(z) > RGi(z) for some y∗ ∈ Y , and, therefore, in that423

case, we have424

∆z ≤ (e+ 1) · exp
(
RGi(z)

)
· (e− 1)

= (e+ 1)
{

exp
(
RGi(z) + 1

)
− expRGi(z)

}
≤ (e+ 1)

{
expRGi∪{xy∗}(z)− expRGi(z)

}
≤ (e+ 1) ·

∑
y∈Y

{
expRGi∪{xy}(z)− expRGi(z)

}
.

(77)

Note that if RG′i(z) = RGi(z), then both the left-hand and the right-hand side of (77) are zero. In425

other words,426

∆z ≤ (e+ 1)
∑
y∈Y

(
exp
(
RGi∪{xy}(z)

)
− exp

(
RGi(z)

))
(78)

holds for all z ∈ [n]. Consequently,427

QG′i −QGi =
∑
z∈[n]

∆z

≤
∑
z∈[n]

(e+ 1)
∑
y∈Y

(
exp
(
RGi∪{xy}(z)

)
− exp

(
RGi(z)

))
= (e+ 1)

∑
y∈Y

Di,xy. �

Setting428

Y = {y ∈ T : x+ y ∈ [2n] \Bi} (79)
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in Claim 5.10 yields that G′i = Gi ∪ {xy : y ∈ Y } satisfies429

QG′i ≤ QGi + (e+ 1)
∑
y∈Y

Di,xy

(70)

≤ QGi + (e+ 1)
∑
y∈Y

Ui,x+y

(64)+(79)

≤ QGi + (e+ 1)
∑
y∈Y

λniεQGi

(e+ 1)|T |(|T |+ 1)

≤ QGi

(
1 +

λniε

|T |+ 1

)
Def. 3.9(b)

≤ en exp

(
λniε

|T |∑
j=1

1

j

)
exp

(
λniε

|T |+ 1

)

≤ en exp

(
λniε

|T |+1∑
j=1

1

j

)
,

(80)

which means that G′i satisfies (b) of Definition 3.9 with T ∪ {x} in place of T .430

Since our assumption that x ∈ T̃i implies that T ∪{x} does not satisfy Pλ,ε,i, the graph G′i must431

fail (a) of Definition 3.9. Thus432

e(G′i) = e(Gi) + |Y | <
(
1− αi

)(|T |+ 1

2

)
(81)

and, as Gi satisfies (a), we conclude that433

|Y | <
(
1− αi

){(|T |+ 1

2

)
−
(
|T |
2

)}
=
(
1− αi

)
|T |. (82)

From the definition of Y in (79) and the fact that T ⊂ [n], x ∈ [n], it follows that434

Y = T \ (Bi − x). (83)

Hence435

|(T + x) ∩Bi| = |T ∩ (Bi − x)| = |T | − |Y | ≥ αi |T |. (84)

Since x ∈ T̃i was arbitrary, the proof of Lemma 5.7 is complete. �436

Recall Definition 4.3 from Section 4.2. Lemma 5.7 implies that for every i ∈ {0, 1, . . . , d1/εe},437

there exists a B = Bi with |B| = O(|T |4/(λniε)) such that for every A ⊂ T̃i,438

|HT (A,B)| ≥ αi |T | |A|. (85)

Together with Lemma 4.5, this yields the following corollary.439

Corollary 5.11. Suppose that T is a (λ, ε)-bounded set with cardinality at least n1/100 and less440

than s1−6ε. For every i ∈ {0, . . . , d1/εe − 1} and any set A ⊂ T̃i with441

|A| ≥ s−2+8εn, (86)
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we have442

eCT (A) = Ω

(
α3
i |A|2

|T |nε(log n)3

)
. (87)

Proof. Fix i ∈ {0, . . . , d1/εe − 1} and let B = Bi(T ) be the set from Lemma 5.7. In particular,443

|B| = O
(
|T |4/(λniε)

)
. Also let444

δ = αi. (88)

We now show that the the graph H = HT (A,B) satisfies all the conditions of Lemma 4.5 with i+1445

in place of i. We proceed in steps. From (24), we have446

δ2 = α2
i = ξ2(2

i+1−1) = ξ2
i+2−2 =

αi+1

ξ
>
αi+1

100ξ
. (89)

Our assumptions that i < d1/εe and that T is (λ, ε)-bounded imply that T satisfies Pλ,ε,i+1 (see447

Definition 3.9). Moreover, we also assume that |T | ≥ n1/100. Lemma 5.7 implies that every a ∈448

A ⊂ T̃i satisfies449

degH(a) = |(T + a) ∩B| ≥ δ |T |. (90)

Finally, recalling that λ = s5−25ε/n ≥ 1 (see (26)) and that s ≥ n1/(5−25ε), we have that the average450

degree D of the vertices in B satisfies451

D =
|H|
|B|
≥ δ|A||T |

|B|
≥ δ s

−2+8εn |T |
|B|

= Ω

(
δ
s−2+8εnλniε

|T |3

)
= Ω

(
δ
s3−17εniε

|T |3

)
≥ δsε ≥ 5000, (91)

where we used that |T | < s1−6ε and that n is large. By Lemma 4.5 (with i + 1 in place of i), we452

have453

eCT (A) = Ω

(
δ2

|A| |T |2

λn(i+1)ε(log n)3

(
|H|
|B|

)2)
(91)
= Ω

(
δ2

|A| |T |2

λn(i+1)ε(log n)3
·Dδ |T | |A|

|B|

)
= Ω

(
δ3

D |A|2|T |3

|B|λn(i+1)ε(log n)3

)
(88)
= Ω

(
α3
i

D

|T |nε(log n)3
|T |4

|B|λniε
|A|2

)
.

(92)

Since |B| = O
(
|T |4/(λniε)

)
, the term |T |4/|B|λniε on the right hand side of (92) can be replaced454

by 1. Hence, from (91) and (92) it follows that (87) holds and the corollary is proved. �455

Let s ∈ [n1/(5−25ε), 3n1/3] be fixed and t < s1−6ε be an integer. In order to prove Proposition 3.11,456

we will estimate how many B3-sets have a maximal (λ, ε)-bounded set T with cardinality t. As we457

observed above, if T is a maximal (λ, ε)-bounded subset of S, then S \T ⊂ T̃ (recall Definition 5.6).458

Therefore, it suffices to prove an upper bound for the number of B3-sets S satisfying S \T ⊂ T̃ . For459

that we shall apply Lemma 3.3 to the graph CT [T̃ ]. Therefore we have to show that CT [T̃ ] satisfies460

the conditions of the lemma. We need the following claim.461

Claim 5.12. The set T̃d1/εe is empty.462
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Proof. Recall that T̃d1/εe is the set of all x such that T∪{x} is a B3-set and there is no graph Gd1/εe ⊂463 (
T∪{x}

2

)
satisfying both conditions (a) and (b) of Definition 3.9 with i = d1/εe and T ∪{x} in place464

of T . The claim will follow after we show that for any x such that T ∪{x} is a B3-set, if we let Gd1/εe465

be the complete graph K(T ∪ {x}) on T ∪ {x}, then conditions (a) and (b) hold. Condition (a)466

follows immediately for Gd1/εe = K(T ∪ {x}). As for (b), observe first that, as a little thought467

shows, we have RGd1/εe(z) ≤ |T |+ 1 for all z since T ∪ {x} is a B3-set. Hence468

QGd1/εe ≤ ne
|T |+1 ≤ en exp

(
λnd1/εeε

|T |+1∑
j=1

1

j

)
, (93)

which establishes (b) and proves the claim. �469

The following claim is a simple consequence of Corollary 5.11 and Claim 5.12.470

Claim 5.13. Suppose that T is a (λ, ε)-bounded set with cardinality at least n1/100 and less471

than s1−6ε. For any set A ⊂ T̃ with472

|A| ≥ d1/εes−2+8εn, (94)

we have473

eCT (A) = Ω

( α3
d1/εe−1|A|

2

|T |nε(log n)3

)
. (95)

Proof. Let A ⊂ T̃ be as in the statement of the claim. By Claim 5.12 and the pigeonhole principle,474

there must be some i ∈ {0, 1, . . . , d1/εe − 1} such that |A ∩ T̃i| ≥ |A|/d1/εe ≥ s−2+8εn. Applying475

Corollary 5.11 to A ∩ T̃i in place of A yields that476

eCT (A) = Ω

(
α3
i |A ∩ T̃i|2

|T |nε(log n)3

)
. (96)

Since αi ≥ αd1/εe−1 and |A ∩ T̃i| = Θ(|A|), the claim follows. �477

We are finally ready to prove Proposition 3.11.478

Proof of Proposition 3.11. In view of Claim 5.13, the graph CT [T̃ ] satisfies (16) for479

β = Ω

( α3
d1/εe−1

|T |nε(log n)3

)
and R = γn = d1/εes−2+8εn� 1. (97)

Set q = (log n)/β and note that (18) is satisfied as well. Moreover, since the assumptions of480

Proposition 3.11 require that s > n1/5 and |T | ≤ s1−6ε, we have481

q = O

(
|T |nε (log n)4

α3
d1/εe−1

)
(24)
= O

(
s1−6εs5ε(log n)32

d1/εe+1
)

= o(s). (98)
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From Lemma 3.3 we conclude that the number of extensions of T into a B3-set of size s such that T482

is a maximal (λ, ε)-bounded subset is at most483 (
n

q

)(
d1/εes−2+8εn

s− q − |T |

)
≤ ns−|T |

(
d1/εee

s2−8ε(s− q − |T |)

)s−q−|T |
≤ ns−|T |

(
1

s3−8ε−o(1)

)s
.

(99)

In view of Lemma 4.1, a maximum (λ, ε)-bounded subset of a B3-set of cardinality s always contains484

at least s1/7 elements, hence we can assume, without loss of generality, that485

n1/100 � s1/7 ≤ t = |T | < s1−6ε.

In particular, considering all possible choices of seed set T , the number of B3-sets that do not486

contain any (λ, ε)-bounded subset of size larger than s1−6ε is at most487

s1−6ε∑
t=s1/7

(
n

t

)
ns−t

(
1

s3−8ε−o(1)

)s
≤
(

n

s3−8ε−o(1)

)s
.

This completes the proof of Proposition 3.11. �488

6. Proof of Lemma 4.5489

Fix an integer i ≥ 0 and real numbers ε > 0, λ ≥ 1, D ≥ 5000 and δ ∈ (0, 1] satisfying δ2 ≥490

αi/100ξ. Suppose that a set T ⊂ [n] with at least n1/100 elements satisfies Pλ,ε,i. Moreover, suppose491

that A ⊂ [n] and B ⊂ [2n] are such that the graph H = HT (A,B) satisfies the two conditions492

from the statement of the lemma. The fact that T satisfies Pλ,ε,i means that, in particular, we may493

choose a graph Gi on the vertex set T that satisfies (a) and (b) of Definition 3.9.494

Definition 6.1 (Special paths). A 4-path (a, b, a′, b′, a′′) in H is said to be a Gi-special path, or495

simply a special path, if496

(a) a, a′, a′′ ∈ A and b, b′ ∈ B,497

(b) {b− a, b′ − a′} and {b− a′, b′ − a′′} are edges of Gi, and498

(c) the differences b− a, b′ − a′, b− a′, and b′ − a′′ are all distinct.499

Note that a 4-path (a, b, a′, b′, a′′) between a and a′′ ∈ A is special if, letting z1 = b−a, z2 = b′−a′,500

z3 = b− a′, and z4 = b′ − a′′, we have501

(z1z2, z3z4) ∈ G2
i , a′′ − a = (z1 + z2)− (z3 + z4) and the zis are all distinct. (100)

We claim that for any a, a′′ ∈ A, the number of special paths from a to a′′ is at most 4RGi(a
′′−a).502

Indeed, if an ordered 4-tuple (z1, z2, z3, z4) is a solution to (100), then the sequence of elements503

a, b := a+ z1, a
′ := a+ z1 − z3, b′ := a+ z1 − z3 + z2, a

′′ = a+ z1 − z3 + z2 − z4 (101)

forms a special path in H provided that a′ ∈ A and b, b′ ∈ B. Any solution to (100) remains504

a solution after swapping z1 with z2 or z3 with z4. Therefore, it follows from the definition of505

RGi (see (20)) that the number of solutions to (100) is exactly 4RGi(a
′′ − a). (For completeness,506
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a

b

a′

contained in NGi(b− a) + a′
b′

a′′ a+ b′ − b

Figure 4. Counting semi-special paths extending P = (a, b, a′) in the graph H ′

from Claim 6.3. The first two edges are determined by P and the third edge {a′, b′}
must be such that {b − a, b′ − a′} ∈ Gi. In view of the properties of H ′, most
of the H ′-neighbors of a′ produce extensions of P to a semi-special path. Note
that the fourth edge may be any edge incident to b′ except for {a′, b′} and possibly
{b′, a + b′ − b}, {b′, a′ + b′ − b} and {b′, a}. For instance, if a + b′ − b is a neighbor
of b′, then it cannot be used to produce a semi-special path since the difference
b′ − (a+ b′ − b) = b− a would repeat the difference of the first edge {a, b}.

we remark that not all solutions need to define paths in H since A and B are just subsets of [n]507

and [2n].) We conclude that the total number N of special paths in H satisfies508

N = O
(
|C̃Gi |

)
(102)

(see Definition 3.5). Recalling (23), given that Gi satisfies (b) of Definition 3.9, we have509

4RGi(a
′′ − a) ≤ 4 logQGi ≤ 4λniε

|T |∑
j=1

1

j
≤ 4λniε log n. (103)

In view of Proposition 3.6, inequalities (102) and (103) tell us that Lemma 4.5 will be proved if we510

establish the following claim.511

Claim 6.2. The total number N of special paths satisfies512

N = Ω

(
δ2|A|D2|T |2

(log n)2

)
. (104)

In order to prove Claim 6.2, we will first construct a subgraph H ′ ⊂ H satisfying certain prop-513

erties that will enable us to estimate the number of special paths N in H.514

Claim 6.3. There exists d ≥ D/16 and H ′ ⊂ H with vertex classes A′ ⊂ A and B′ ⊂ B such that515

(i) degGi
(b− a) ≥

(
1− 4αi/δ

)
|T | for every (a, b) ∈ H ′;516

(ii) |H ′| ≥ |H|/8 log n;517

(iii) degH′(a) ≥ δ|T |/16 log n for every a ∈ A′;518

(iv) d ≤ degH′(b) ≤ 12d for every b ∈ B′.519

We postpone the proof of Claim 6.3 and now establish Claim 6.2.520

Proof of Claim 6.2. Let P = (a, b, a′) be an arbitrary path of length two in the graph H ′ obtained521

from Claim 6.3, with a, a′ ∈ A′ and b ∈ B′. Consider all possible extensions of this path to a path522
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of length four, say (a, b, a′, b′, a′′) with the condition that the differences523

b− a, b− a′, b′ − a′, b′ − a′′ (105)

are all distinct and, moreover {b − a, b′ − a′} ∈ Gi. Call such (oriented) paths semi-special. Note524

that if both P→ = (a, b, a′, b′, a′′) and P← = (a′′, b′, a′, b, a) are semi-special, then we must have525

both526

{b− a, b′ − a′}, {b′ − a′′, b− a′} ∈ Gi, (106)

and the differences b − a, b − a′, b′ − a′, b′ − a′′ are all distinct. This means that the paths P→527

and P← are in fact special (recall Definition 6.1). We shall later use this simple fact.528

Since H ′ satisfies (iii), we have degH′(a
′) ≥ δ|T |/16 log n. Moreover, by condition (i), we have529

degGi
(b − a) ≥

(
1 − 4αi/δ

)
|T |. As we require that δ2 ≥ αi/100ξ, it follows that the number of530

non-neighbors of b− a in Gi is at most531

4αi
δ
|T | ≤ 400ξδ |T |

(24)

≤ degH′(a
′)

150
. (107)

Consequently, at least 99.3% of the neighbors b′ of a′ in H ′ are such that {b− a, b′ − a′} ∈ Gi. Let532

X =
{
b′ ∈ NH′(a

′) \ {b} : {b− a, b′ − a′} ∈ Gi
}

(108)

and Xc = NH′(a
′) \X. Note that |X| ≥ 0.993 |NH′(a

′)| − 1 ≥ 0.99|NH′(a
′)|. For each b′ ∈ X, we533

have at least degH′(b
′) − 4 ≥ d − 4 possible choices for a′′ ∈ NH′(b

′) that produce a semi-special534

path, namely, the only requirement is that b′−a′′ must be different from the other three differences535

and a′′ cannot coincide with a (in fact, one sees that this last condition is automatically satisfied,536

if one recalls that T is a B3-set). See Figure 4 for an illustration.537

From the discussion above, the number NP of semi-special paths that start with P satisfies538

NP ≥
∑
b′∈X

(degH′(b
′)− 4) ≥

(
1− 4

d

) ∑
b′∈X

degH′(b
′) ≥ 0.98

∑
b′∈X

degH′(b
′), (109)

where in the last inequality we used the fact that d ≥ D/16 > 200.539

On the other hand, the total number of 4-paths starting with P is at most540 ∑
b′∈NH′ (a

′)

degH′(b
′) =

∑
b′∈X

degH′(b
′) +

∑
b′∈Xc

degH′(b
′). (110)

Since the degrees in B′ are all in [d, 12d], we get541 ∑
b′∈Xc

degH′(b
′) ≤ 12d |Xc| ≤ 12

99
d |X| ≤ 12

99

∑
b′∈X

degH′(b
′). (111)

Hence, the total number of 4-paths starting with P = (a, b, a′) is bounded from above by542 (
1 +

12

99

) ∑
b′∈X

degH′(b
′)

(109)

≤
(

1 +
12

99

)
100

98
NP <

4

3
NP . (112)

Let N4 be the total number of paths in H ′ of length 4 starting and ending in A′. We proved543

above that the number NP of semi-special paths that start with P corresponds to more than 3/4544

of the total number of 4-paths that starting with P . Since our argument holds for every P , we545
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conclude that there are more than 3N4/4 semi-special paths in H ′. Considering the involution that546

takes 4-paths P = (a, b, a′, b′, a′′) to their reverse P← = (a′′, b′, a′, b, a), we see that more than 1/2547

of the 4-paths in H ′ starting and ending in A′ are semi-special in both directions, and thus are548

special. That is, there are more than N4/2 special paths in H ′. Finally, we estimate N4 by first549

picking an edge ab ∈ H ′, then picking a neighbor a′ 6= a of b, and so on. This yields550

N4 ≥
|H|

8 log n
(d− 1)

(
δ|T |

16 log n
− 1

)
(d− 2), (113)

whence the claim follows. �551

It only remains to prove Claim 6.3.552

Proof of Claim 6.3. This proof will be divided into three simple steps. First we define a set L of553

low degree vertices in Gi and show that this set is quite small. In the second step, we partition554

the class B according to the degrees of the vertices in HT\L(A,B) and select one part Bj that is555

incident to a good fraction of the edges while at the same time Bj has vertices with roughly the556

same degree. Finally, we delete the vertices of low degree in HT\L(A,Bj) to obtain the desired557

graph.558

We assume that n, and therefore |T |, are sufficiently large for the calculations that follow to559

hold. Let560

L =
{
x ∈ T : degGi

(x) <
(
1− 4αi/δ)

)
|T |
}
. (114)

Note that561

2 e(Gi) =
∑
x∈T

degGi
(x) ≤ |L|

(
1− 4αi/δ

)
|T |+ (|T | − |L|)|T | = |T |2 − 4αi

δ
|T | |L|. (115)

On the other hand, it follows from the assumption on Gi (see Definition 3.9(a)) that562

2 e(Gi) ≥
(
1− αi

)
|T |(|T | − 1) ≥ |T |2 − 2αi |T |2. (116)

A straightforward comparison of the two inequalities above yields the following (non-tight) bound563

|L| ≤ δ

2
|T | ≤ |H|

2|A|
, (117)

and hence |L||A| ≤ |H|/2. Let H∗ = HT\L(A,B) ⊂ H be the subgraph of H consisting of all the564

edges ab ∈ H (a ∈ A, b ∈ B) such that b− a ∈ T \ L. It follows from (117) and the assumption of565

the lemma that566

e(H∗) = e(H)− |L| |A| ≥ e(H)/2. (118)

Since the graph H ′ that we construct in what follows is a subgraph of H∗, it will satisfy (i).567

Let I0 = [0, D/4), and Ij = [(D/4)ej−1, (D/4)ej) for j ≥ 1. For j ≥ 0, let568

Bj = {b ∈ B : degH∗(b) ∈ Ij}. (119)

Note that Bj = ∅ for j ≥ log |T | since the maximum degree is at most |T |. Moreover, the number569

of edges incident to B0 is at most |B|D/4 = e(H)/4. In particular, by the pigeonhole principle,570
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there exists 1 ≤ j ≤ log |T | such that there are at least571

e(H∗)− e(H)/4

log |T |
≥ e(H)

4 log n
(120)

edges of H∗ incident to Bj .572

Set d = (D/16)ej−1, and Ĥ = H∗[A ∪ Bj ]. Since we assume that H satisfies (I), it follows573

from (120) that574

e(Ĥ) ≥ δ |T | |A|
4 log n

. (121)

In particular, the average degree of vertices of A in Ĥ is at least δ|T |/4 log n and the degrees575

of vertices in Bj are all in [4d, 12d]. While there exists a vertex from A with degree smaller576

than δ
16 logn |T |, or a vertex from B with degree less than d, remove the vertex from the graph Ĥ,577

together with all the incident edges. The number of edges deleted by this procedure is at most578

|A| δ

16 log n
|T |+ |B| d ≤ 1

2
e(Ĥ). (122)

Hence, at least e(Ĥ)/2 ≥ e(H)/8 log n edges remain after the deletion procedure above. Let H ′ be579

the graph obtained after the procedure and observe that it satisfies (ii), (iii), and (iv). �580

7. Concluding remarks581

In this whole paper, we considered δ to be an arbitrary, but fixed positive real number. Our582

argument allows one to take some function δ = δ(n) with δ → 0 as n → ∞. Here, we opted for583

simplicity and did not attempt to optimize the argument to obtain the smallest possible δ = δ(n).584

We close by restating our conjectured answer (see [4]) to the problem addressed in Section 2.585

We believe that Theorem 2.1, concerning the cardinality of the largest B3-sets contained in the586

random sets [n]m, is a particular case of a more general result.587

Conjecture 7.1. Let h ≥ 2 be an integer. Suppose 0 ≤ a ≤ 1 is a fixed constant and m = m(n) =588

(1 + o(1))na. Then, asymptotically almost surely, we have Fh([n]m) = nb+o(1), where b = b(a) is589

given by590

b(a) =


a for 0 ≤ a ≤ 1/(2h− 1),

1/(2h− 1) for 1/(2h− 1) ≤ a ≤ h/(2h− 1),

a/h for h/(2h− 1) ≤ a ≤ 1.

(123)

The fact that b(a) is at least as large as stated in (123) is proved in [4]. On the other hand, a591

routine argument shows that, if true, Conjecture 1.3 implies the upper bound for b(a) conjectured592

in (123). The case h = 2 of Conjecture 7.1 is proved in [10, 11] and we established the case h = 3593

in this paper.594
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[5] P. Erdős, On a problem of Sidon in additive number theory and on some related problems. Addendum, J. London603

Math. Soc. 19 (1944), 208.604
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