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Abstract

The primary aim of this paper is to investigate some general properties of a
Hamiltonian circle action under certain minimality condition. As main applica-
tions of our techniques of this paper, we show the existence and also non-existence
theorems of a Hamiltonian circle action of pure type on a compact symplectic
manifold under the assumption that the fixed-point set has the smallest possible
number of components and satisfies a certain non-minimality condition. Those
theorems can be regarded as a first step towards the classification of higher di-
mensional closed symplectic manifolds admitting a Hamiltonian circle action, and
provide some constraints to the existence of certain Hamiltonian circle actions.
Some new general formulas for the S1-equivariant Euler class of the negative nor-
mal bundle of a fixed-point component which might be of independent interest
play a crucial role in obtaining main applications of this paper.
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1 Introduction and Main Results

Throughout this paper, the action of a Lie group on a manifold is always assumed to
be effective.

Let (M,ω) be a compact symplectic manifold with a non-degenerate closed 2-form
ω. A circle action on M is called symplectic if it preserves ω. A symplectic circle
action on M is Hamiltonian if there is a moment map ϕ : M → R such that

ιξMω = −dϕ,

where ξM denotes the fundamental vector field induced by the circle action. A compact
symplectic manifold with a Hamiltonian circle action will be often called a Hamilto-
nian S1-space, for simplicity.
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As is well-known, Audin, Ahara-Hattori, and Karshon have completed the classifi-
cation of four dimensional closed symplectic manifolds admitting a Hamiltonian circle
action (see [1], [2], and [6]). Recently there have been some interesting works of the
classifications of higher dimensional Hamiltonian S1-spaces satisfying certain minimal-
ity conditions (see, e.g., [4], [7], [8], [9], and [11]). In a similar vein, the goal of this
paper is to show some existence and also non-existence theorems of a Hamiltonian circle
action of pure type on a compact symplectic manifold under the assumption that the
fixed-point set has the smallest possible number of components and satisfies a certain
non-minimality condition. So results of this paper as well as in [11] and [9] can be
regarded as a first step towards the classification of higher dimensional closed symplec-
tic manifolds admitting a Hamiltonian circle action, and give some constraints to the
existence of certain Hamiltonian circle actions. They are, in fact, some consequences
of general formulas for the S1-equivariant Euler class of the negative normal bundle of
a fixed-point component which are of independent interest in their own right. We also
remark that our results are essentially related to the fundamental questions about the
existence of a Lie group action on a given manifold posed by T. Petrie (see [12] and
[13]).

In order to explain our results more precisely, let (M,ω) be a compact Hamiltonian
S1-space with moment map ϕ : M → R. Then ϕ is a perfect Morse-Bott function
whose critical point set is exactly the fixed-point set MS1

(refer to [2] and [10]). Since
M is a compact symplectic manifold equipped with a non-degenerate closed 2-form ω,
it is obvious that for all 0 ≤ i ≤ 1

2dimM , [ω]i represents a non-zero class in H2i(M ;R).
Hence, the following inequality always holds:

(1)
∑

F⊂MS1

(dimF + 2) ≥ dimM + 2.

Recall also that each fixed connected component F is a symplectic submanifold of even
codimension in M .

It is quite natural to consider the extreme case of the above inequality (1), as
follows.

Definition 1.1. A Hamiltonian S1-space (M,ω) is said to satisfy the minimal di-
mension condition if ∑

F⊂MS1

(dimF + 2) = dimM + 2

holds.

On the other hand, there is also the notion of a minimality condition in terms of
the Betti numbers.

Definition 1.2. A Hamiltonian S1-space (M,ω) is said to satisfy the minimal even
Betti number condition if all even Betti numbers b2i(M) = 1 for all 0 ≤ i ≤ 1

2dimM .
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Since the moment map ϕ is a perfect Morse-Bott function, it can be easily shown
that if M satisfies the minimal even Betti number condition, then the Hamiltonian
circle action satisfies the minimal dimension condition ([9], Lemma 4.1). However, the
converse is not true, in general. On the other hand, if M is 6-dimensional, the minimal
even Betti number condition is equivalent to the minimal dimension condition (see
Remark 4.3 of [9] for more details).

In their paper [9], Li and Tolman have considered the case that the fixed point
set has the smallest possible number of components and these components have the
smallest possible dimension (see also [3] for some earlier work). Under the smallest
possible conditions as above, they proved in [9] that the cohomology ring H∗(M ;Z)
and the total Chern class c(M) of M are identical to those of one of the complex
projective space CPn+1 and the Grassmannian G̃r2(R

n+2) of oriented two-planes in
Rn+2 ([9], Theorem 1). To be precise, their main results can be summarized, as follows.

Theorem 1.3. Let the circle act on a compact symplectic manifold (M,ω) of dimension
2n with moment map ϕ : M → R. Assume that the fixed-point set consists of exactly
two connected components X and Y and that

dimX + dimY + 2 = dimM.

Then one of the following holds:

(a) The action is semifree, H∗(M ;Z) = Z[x]/(xn+1), and the total Chern class
c(M) = (1 + x)n+1.

(b) The action is non-semifree, n ̸= 1 is odd, H∗(M ;Z) = Z[x, y]/(x
1
2
(n+1)− 2y, y2),

and the total Chern class c(M) = (1+x)n+2

1+2x .

Here x has degree 2 and y has degree n+ 1.

Note that as a group H i(M ;Z) is isomorphic to H i(CPn;Z) = Z for both cases in
Theorem 1.3. In addition, it is interesting to note from a recent paper of Li-Olbermann-
Stanley ([8], Theorem 1.4) that the fundamental groups of X, Y , and M as in Theorem
1.3 are all trivial.

In the present paper, we are interested in the somehow next simplest case that the
fixed point has the smallest possible number of components but satisfies a certain non-
minimal dimension condition. Thus this paper can be regarded as a continuation of
a systematic investigation of Hamiltonian circle actions satisfying certain minimality
conditions as in [9], and will provide some more topological understanding of such
compact Hamiltonian S1-spaces. If the fixed point set of a Hamiltonian torus action
on a symplectic manifold M consists of exactly two connected components, then the
symplectic manifold M is usually called a simple Hamiltonian manifold in the
literature (see, e.g., [5]).

For the purposes of this paper, we need the following definition.
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Definition 1.4. A Hamiltonian S1-space (M,ω) is said to satisfy the almost minimal
dimension condition if ∑

F⊂MS1

(dimF + 2) = dimM + 4

holds.

In particular, if the fixed point set MS1
consists of exactly two connected compo-

nents X and Y , i.e., if M is a simple Hamiltonian manifold under a Hamiltonian circle
action, then the almost minimal dimension condition implies that

dimX + dimY = dimM.

More generally, for simple manifolds the following identity always holds:

dimX + dimY = dimM + 2l, l ≥ −1.

It is fairly easy to show that there does not exist a Hamiltonian circle action on a
symplectic manifold of dimension 4 with exactly two fixed point components, X and
Y , such that

dimX + dimY = dimM + 2l, l ≥ 1,

due to the obvious dimensional reason. On the other hand, there exists a Hamiltonian
circle action on a compact symplectic manifold of dimension 4 with exactly two fixed
connected components satisfying the almost minimality condition.

Example 1.5. Consider a Hamiltonian circle action on S2 × S2 which acts on the
first factor by the standard rotation and acts trivially on the second factor. Then the
fixed point sets of the circle action consist of only two components {NP} × S2 and
{SP} × S2, where NP and SP denote the north and south pole of the first factor S2,
respectively. Moreover, the sum of the dimensions of the fixed point sets is equal to 4
that is the dimension of S2 × S2.

As mentioned earlier, Karshon gave a classification of four dimensional closed sym-
plectic manifolds admitting a Hamiltonian circle action (see [6]). According to her
classification, every compact four dimensional symplectic manifold with a Hamiltonian
circle action can be obtained by a sequence of S1-equivariant symplectic blow-ups from
a minimal space. Here the minimal space is either the complex projective space CP2,
or a Hirzebruch surface Hk, or a space with two fixed surfaces and no interior fixed
points. It is well known that Hk is diffeomorphic to S2 × S2 or the twisted S2-bundle
over S2, depending on whether k is even or odd, respectively. Moreover, the spaces
with two fixed surfaces and no interior fixed points turn out to be ruled manifolds.
They are defined to be an S2-bundle over a closed Riemann surface with a circle action
that fixes the base and rotates each fiber, and an invariant symplectic form and a mo-
ment map. In fact, they admits a compatible Kähler structure. The north and south
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pole of each fiber fit together to form two fixed surfaces which are both diffeomorphic
to the base Riemann surface, while by definition the action is free at all other points.
Thus the circle action on the ruled manifolds is always semifree (see [6], Section 6.3 for
more details).

It is interesting to note that there also exists a Hamiltonian circle action on a
compact symplectic manifold of dimension 4n ≥ 8 whose fixed point set consists of the
complex projective spaces and satisfies the almost minimality condition.

Example 1.6. Consider the Grassmannian G̃r2(R
2n+2) of oriented two-planes in

R2n+2. Then SO(2n + 2) acts on the space R2n+2 in a natural way, and so the
circle S1 acts on R2n+2 as the diagonal of SO(2n + 2). This gives rise to a Hamil-
tonian circle action on G̃r2(R

2n+2). Observe that the fixed point set consists of two
connected components which correspond to two orientations on the complex projective
space P(Cn+1) = CPn.

Assume now that X denotes the minimal fixed point component of a Hamiltonian
S1-space M . Let NX be the normal bundle of X in M . Then the S1-equivariant
Euler class eS

1
(NX) of NX lies in HdimM−dimX

S1 (X;Z). Moreover, it follows from [9],
Proposition 2.2 (or Lemma 2.2 below) that there is an element λ ∈ H∗

S1(X;R) =
H∗(X;R)⊗R[t] such that

(2)
∏

F⊂(M\X)S
1

([ω|X ] + t(ϕ(F )− ϕ(X)))
1
2
dimF+1 = λ · eS1

(NX).

Then the following notion will play an important role in the applications of this
paper.

Definition 1.7. A compact Hamiltonian S1-space (M,ω) with moment map ϕ will be
said to be of pure type if λ appearing in the identity (2) is of pure type in that λ is
an element of H∗(CP∞;R) ∼= R[t].

In Section 2, we will provide certain criteria for a Hamiltonian circle action with the
almost minimality condition to be of pure type (see Theorems 2.3 and 2.4). Moreover,
if X consists of just one point, then the Hamiltonian circle action is trivially of pure
type. It is also worth mentioning that any Hamiltonian circle action on a compact
symplectic manifold with exactly two fixed connected components satisfying the mini-
mal dimension condition is automatically of pure type (see, e.g., the proof of Theorem
2.3).

So it seems to be quite a natural question to ask the existence of a Hamiltonian circle
action of pure type on a compact symplectic manifold satisfying the almost minimality
condition, and this question will constitute our main applications in this paper. In
view of the result of Li and Tolman (Theorem 1.3 and its proof) and some existing
examples, it also appears to be reasonable to first begin with investigating the case
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that each connected component of the fixed point set has the same cohomology ring
as the complex projective space. So, let X and Y be two connected components of the
fixed point set of a Hamiltonian S1-space (M,ω). Then the following two conditions
(C1) and (C2) will be used throughout this paper without further mentioning:

(C1) dim X + dim Y = dim M .

(C2) X (resp. Y ) has the same cohomology ring of the complex projective space

CP
1
2
dimX (resp. CP

1
2
dimY ) over integer coefficients.

Given a manifold M , there is a natural map from H∗(M,Z) to H∗(M ;R). The
image of the map forms a lattice in H∗(M ;R). A class in H∗(M ;R) is called integral
if it lies in the image of the map, and is called primitive if, in addition, it is not
a positive integer multiple of any other integral class. For the sake of simplicity, in
this paper we will also say that a symplectic class [ω] is a primitive integral class in
the strong sense if [ω] is a primitive integral class and its restriction to any fixed
connected component of the circle action again induces a primitive integral class.

With these preliminaries in place, our first main application of our investigation
which might be also derived with some computations from the results of Karshon in
[6] and, we think, illustrates our techniques very well is

Theorem 1.8. Let the circle act on a compact symplectic manifold (M,ω) of dimension
4 with moment map ϕ : M → R of pure type, where [ω] is a primitive integral class in
the strong sense. Assume that the fixed point set of the circle action has exactly two
connected components X and Y satisfying (C1) and (C2). If we let m = ϕ(Y )−ϕ(X) >
0, then the following properties hold:

(a) The circle action is always semifree and m = 1.

(b) H∗(X;Z) = Z[u]/u2 and H∗(Y ;Z) = Z[v]/v2, where u = [ω|X ] and v = [ω|Y ].

(c) c(X) = 1 + 2u and c(Y ) = 1− 2v.

(d) c(NX) = 1 + 2u and c(NY ) = 1− 2v.

Remark 1.9. (a) Two items (b) and (c) of Theorem 1.8 are almost trivial, but they
are stated simply in order to provide some notations used in the statement The-
orem 1.8 (d).

(b) It follows from the equation (9) at the end of Section 2 that the condition that
λ is of pure type in our case is equivalent to saying that

C1 =

(
1
2 dimY + 1

)
ΛX

m
[ω|X ] ̸= 0,

where ΛX denotes the product of the weights with multiplicities on the normal
bundle NX of X and C1 denotes the coefficient of t

1
2
dimY−1 in eS

1
(NX) as in
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(7) (so, we have C1 = c1(NX) in the semifree case). In particular, this implies
that Theorem 1.8 does not apply to the case that c1(NX) is trivial. Recall that
Hirzebruch surfaces Hk which form a large class of good examples for Theorem
1.8 are diffeomorphic to S2 ×S2 or the twisted S2-bundle over S2, depending on
whether k is even or odd, respectively. So a Hamiltonian circle action on Hk is
of pure type only if k is odd, which fits well with Theorem 1.8 (4).

Remark 1.10. Note also that, if we drop the condition that [ω] is a primitive integral
class in the strong sense, i.e., its restriction to any fixed connected component of
the circle action induces a primitive integral class, then clearly Theorem 1.8 is no
longer true. For a concrete illustration, consider a semifree Hamiltonian circle action
on CP1 × CP1 given by t · ([z0, z1], [w0, w1]) = ([tz0, z1], [w0, w1]) with an invariant
symplectic form whose cohomology class is n1α1 + n2α2, where α1 and α2 denote
two generators of the integral cohomology ring of CP1 × CP1. Then the difference
m between the levels of moment map at two fixed components {[1, 0]} × CP1 and
{[0, 1]} × CP1 is n1 which is arbitrary. Exactly the same argument applies to any
twisted CP1-bundle over CP1. On the other hand, in higher dimensions we do not
need any extra assumption except that [ω] is a primitive integral class. This is due to
Proposition 3.1 (2).

It can be shown as in Proposition 3.1 that the dimension of a compact symplectic
manifold equipped with a Hamiltonian circle action satisfying the conditions (C1) and
(C2) should be equal to zero modulo four. In contrast to Theorem 1.8, for higher
dimensions we can show a non-existence theorem about a Hamiltonian circle action of
pure type on a compact symplectic manifold with exactly two fixed connected compo-
nents under the almost minimal dimension condition which can be regarded as another
application about Hamiltonian S1-spaces with almost minimality condition, as follows.

Theorem 1.11. Let the circle act on a compact symplectic manifold (M,ω) of dimen-
sion 4n (n ≥ 2) with moment map ϕ : M → R of pure type, where [ω] is a primitive
integral class, whose fixed point set consists of exactly two fixed connected components
X and Y satisfying the almost minimal dimension condition (C1). Then there does
not exist any such Hamiltonian circle action on M such that both of X and Y have the
same cohomology rings of the complex projective spaces over integer coefficients.

Remark 1.12. A careful analysis of the proof of Theorem 1.8 shows that one may
replace the condition (C2) in Theorem 1.8 by a slightly weaker condition by assuming
that dimX ≥ dimY and that only X has the same cohomology ring of the complex
projective space over integer coefficients. This remark also applies to Theorem 1.11.
Recall that there exists a Hamiltonian circle action on G̃r2(R

2n+2) whose fixed point set
consists of the complex projective spaces and satisfies the almost minimality condition.
As a consequence of Theorem 1.11, we can conclude that the Hamiltonian circle action
on G̃r2(R

2n+2) is not of pure type.
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The proof of Theorem 1.11 will be given in Sections 5 and 6. In fact, we divide the
proof into two cases: semifree case and non-semifree case. A new general formula for the
S1-equivariant Euler class of the negative normal bundle of a fixed-point component will
play a crucial role. Theorem 1.11 as well as Theorems 1.3 and 1.8 gives a classification
of Hamiltonian circle actions on a compact symplectic manifold with exactly two fixed
point components for certain special and interesting cases.

Moreover, we remark that Theorem 1.11 might be no longer true, if we drop the
condition (C1) or (C2) of Theorem 1.11.

Example 1.13. Indeed, there does exist a Hamiltonian circle action on a compact
symplectic manifold M of dimension 2n ≥ 6 with exactly two fixed point components,
X and Y satisfying the condition (C1) such that one (or both) of X and Y does not
have the cohomology ring of the complex projective space. For example, let N be a
compact symplectic manifold with a Hamiltonian circle action whose fixed point set
consists of two connected componentsX ′ and Y ′ such that dimX ′+dimY ′+2 = dimN .
Then consider the product symplectic manifold M = N×S2 equipped with an obvious
Hamiltonian circle action which acts trivially on S2. Then the fixed point set consists of
two connected components X = X ′×S2 and Y = Y ′×S2, and dimX+dimY = dimM
holds. Note that from a result of [9] the cohomology ring of X ′ is isomorphic to

CP
1
2
dimX′

. Thus the cohomology of X is clearly not isomorphic to that of CP
1
2
dimX

unless dimX ′ is equal to zero, but the almost minimal dimension condition still holds.

Further, there exists a Hamiltonian circle action on a compact symplectic manifold
M of dimension greater than or equal to 6 with exactly two fixed point components,
X and Y , satisfying the dimension condition dimX + dimY = dimM + 2l for some
integer l greater than or equal to −1.

Example 1.14. As a concrete example, take the Grassmannian manifold Grk(C
r) of

unoriented complex k-planes in Cr with a Hamiltonian circle action whose fixed point
set consists of two Grassmannian manifolds Grk−1(C

r−1) and Grk(C
r−1). Then clearly

we have

dimGrk(C
r) + 2l = 2k(r − k) + 2l = dimGrk−1(C

r−1) + dimGrk(C
r−1),

where l = k(r−k)−r (see Example 1.4 of [5] for more details). However, the cohomology
ring of Grp(C

q) is not isomorphic to that of CPp(q−p), unless p = 1 or p = q − 1. So
these examples do not contradict Theorem 1.11.

In addition, Theorems 1.8 and 1.11 also partially answer a question (Question in
[9], Section 1) raised by Li and Tolman about the existence of an effective Hamiltonian
circle action with two fixed point components whose stabilizer is Zk for k > 2. In fact,
the circle acts on the fiber of the normal bundle of X with weights {1, 1, . . . , 1, 1} for
the case (1) of Theorem 1.3 and with weights {2, 2, · · · , 2, 1} for the case (2) of Theorem
1.3, assuming that X is the minimum of the moment map ϕ. So there exists a point
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whose stabilizer is Zk with k = 1 or 2 for a Hamiltonian circle action with exactly two
fixed point components (here, Z1 = {0}). Moreover, by using a combinatorial argument
involving with the weights, Li and Tolman proved in the appendix of the paper [9] that
for a Hamiltonian circle action with exactly two fixed point components, no point has
stabilizer Zk for k > 6. Then they raised a question of the existence of an example with
stabilizer Zk for any k > 2. As an interesting by-product of the classification results
(Theorems 1.8 and 1.11), we can now negatively answer their question (Question in
[9], Section 1) in our case, as follows:

Theorem 1.15. Let the circle act on a compact symplectic manifold (M,ω) of dimen-
sion 4n (n ≥ 1) with moment map of pure type, where [ω] is a primitive integral class
such that the fixed point set consists of exactly two fixed point components X and Y
satisfying the conditions (C1) and (C2). Then there is no point with stabilizer Zk for
any k ≥ 2.

This theorem makes more sense for dimension 4, since in higher dimensions there
does not exist a Hamiltonian S1-space of pure type satisfying two conditions (C1) and
(C2), as in Theorem 1.11.

This paper is organized as follows. In Section 2, we first prove a certain formulas
regarding the S1-equivariant Euler class of the normal bundle of a certain fixed point
set of the circle action on a compact symplectic manifold. It will play an important
role in classifying the symplectic circle actions on a compact symplectic manifold with
moment map. In Section 3, we show some preparatory results which are needed to show
main theorems in Sections 5 and 6. Section 4 is devoted to collecting some general facts
already proved by Li and Tolman in [9] which can be still applied to our settings.

Finally, we give proofs of our main Theorems 1.8 and 1.11 in Sections 5 and 6.
We first deal with a semifree case in Section 5, and then we complete the proof of
Theorem 1.11 for a non-semifree case, in Section 6. In particular, in Section 5 we give
a classification of certain semifree Hamiltonian circle actions on a compact symplectic
manifold M of dimension 4 with exactly two fixed connected components X and Y
satisfying the almost minimal dimension condition dimX +dimY = dimM (Theorem
5.1).

2 S1-equivariant Euler classes

The goal of this section is to derive some formulas regarding the S1-equivariant Euler
class of the normal bundle of a certain fixed point set of the circle action on a com-
pact symplectic manifold. This formula will play an important role in classifying the
symplectic circle actions on a compact symplectic manifold with moment map of pure
type in Sections 5 and 6.

When a circle acts on a manifoldM , recall that the equivariant cohomologyH∗
S1(M ;R)
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is defined to be the ordinary cohomology

H∗(M ×S1 ES1;R), R = Z or R,

where ES1 denotes the total space of the universal S1-bundle over the classifying space
BS1.

Throughout this section, we assume that the circle acts on a symplectic manifold
(M,ω) of dimension 2n ≥ 4 with exactly two fixed point components, X and Y , such
that

dimX + dimY = dimM + 2l, l ≥ −1

unless stated otherwise. For simplicity, letX denote the minimal fixed point component
of the circle action and let NX be the normal bundle of X in M . Then the S1-
equivariant Euler class eS

1
(NX) of NX lies in HdimM−dimX

S1 (X;Z) = HdimY
S1 (X;Z) for

the case of l = 0. More generally, if dimX + dimY = dimM + 2l for l ≥ −1, then
eS

1
(NX) lies in HdimY−2l

S1 (X;Z).
As before, let ΛX be the product of the weights with multiplicities on the normal

bundle NX of X and let t denote a generator of H∗(CP∞;Z) = Z[t]. We then recall
the following lemma ([9], Lemma 2.3).

Lemma 2.1. Let the circle act on a compact symplectic manifold (M,ω) with moment
map ϕ : M → R. Let F be a fixed point component. Then there exists an element ũ in
H2

S1(M ;R) such that
ũ|F ′ = [ω|F ′ ] + t(ϕ(F )− ϕ(F ′))

for all fixed components F ′. Moreover, if [ω] is an integral class, then ũ is also an
integral class and ϕ(F )− ϕ(F ′) is an integer.

We also need recall the following interesting lemma ([9], Proposition 2.2).

Lemma 2.2. Let β ∈ H∗
S1(M ;R). If β|F ′ = 0 for all fixed point components F ′ with

ϕ(F ′) < ϕ(F ), then β|F is a multiple of eS
1
(N−

F ), i.e.,

β|F = λ · eS1
(N−

F )

for some λ ∈ H∗
S1(X;R) = H∗(X;R) ⊗R[t]. Here, N−

F denotes the negative normal
bundle of a fixed point component F .

Next, we compute the S1-equivariant Euler class eS
1
(NX) of the normal bundle

NX .

Theorem 2.3. Let the circle act on a compact symplectic manifold (M,ω) with mo-
ment map ϕ : M → R of pure type. Assume that the fixed point set consist of only two
connected components X and Y such that

dimX + dimY = dimM + 2l, l ≥ −1.
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Then the following identity holds:

(3) tl+1eS
1
(NX) = ΛX

(
t+

[ω|X ]

ϕ(Y )− ϕ(X)

) 1
2
dimY+1

.

Proof. Since the case of l = −1 has already been dealt with in the paper [9], Lemma
4.8 of Li and Tolman, we will consider only the case of l ≥ 0.

By Lemma 2.1, there exists ũ in H2
S1(M ;R) such that

ũ|Y = [ω|Y ] + t(ϕ(X)− ϕ(Y )).

Let
β = (ũ+ t(ϕ(Y )− ϕ(X)))

1
2
dimY+1 .

Then clearly we have

β|Y = (ũ|Y + t(ϕ(Y )− ϕ(X)))
1
2
dimY+1 = [ω|Y ]

1
2
dimY+1 = 0,

due to the dimensional reason. Now, if we apply Lemma 2.2 to β with −ϕ, there exists
λ ∈ H∗

S1(X;R) such that

β|X = ([ũ|X ] + t(ϕ(Y )− ϕ(X)))
1
2
dimY+1

= ([ω|X ] + t(ϕ(Y )− ϕ(X)))
1
2
dimY+1

= λ · eS1
(NX).

(4)

Since λ lies in H∗(CP∞;R) = R[t] by assumption, we may set

λ = a0 + a1t+ · · ·+ apt
p, ai ∈ R.

We now assume that l = 0. Then the S1-equivariant Euler class eS
1
(NX) is of the form

eS
1
(NX) = ΛXt

1
2
dimY + C1t

1
2
dimY−1 + · · ·+ C 1

2
dimY−1t+ C 1

2
dimY ,

where Ci ∈ H2i(X;R). Hence, we have the following

λ · eS1
(NX) = (a0 + a1t+ · · ·+ apt

p)

· (ΛXt
1
2
dimY + C1t

1
2
dimY−1 + · · ·+ C 1

2
dimY−1t+ C 1

2
dimY ).

(5)

Since the non-zero highest degree of t of the left hand side of the equation (4) is
1
2 dimY + 1, ΛX is non-zero, and Ci are elements of degree 2i of H2i(X;R), it follows
from (5) that we should have a2 = a3 = · · · = ap = 0 for p ≥ 2. Thus it follows that
λ = a0 + a1t.
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Next, by comparing the coefficients of t
1
2
dimY+1 and t

1
2
dimY of both sides of the

equation (4), we obtain

a1ΛX = (ϕ(Y )− ϕ(X))
1
2
dimY+1,

a0ΛX + C1a1 =

(
1

2
dimY + 1

)
[ω|X ](ϕ(Y )− ϕ(X))

1
2
dimY .

(6)

By comparing the cohomological degrees of both sides of the second equation of (6), it
is easy to see that a0 = 0. Finally, it follows from the first equation of (6) that

a1 =
1

ΛX
(ϕ(Y )− ϕ(X))

1
2
dimY+1.

Hence, we have

teS
1
(NX) = ΛX

(
t+

[ω|X ]

ϕ(Y )− ϕ(X)

) 1
2
dimY+1

,

which completes the proof for the case l = 0.
Next, we deal with the general case of l > 0. This time, we have

rankRNX = dimM − dimX = dimY − 2l.

Thus, eS
1
(NX) ∈ HdimM−dimX

S1 (X;R) = HdimY−2l
S1 (X;R).

Let λ be the same as before. Then we have

λ · eS1
(NX) = (a0 + a1t+ · · ·+ apt

p) · (ΛXt
1
2
dimY−l

+ C1t
1
2
dimY−l−1 + · · ·+ C 1

2
dimY−l−1t+ C 1

2
dimY−l).

(7)

The highest degree of t of the right hand side of the equation (7) is 1
2 dimY −l+m, while

the non-zero highest degree of t of the left hand side of the equation (4) is 1
2 dimY +1.

Thus at least we should have

1

2
dimY − l + p ≤ 1

2
dimY + 1, i.e., p ≤ l + 1.

This implies that al+2 = al+3 = · · · = ap = 0 for all m ≥ l + 2. Next, we compare
the coefficients of tk of both sides of the equation (4) for 0 ≤ k ≤ 1

2 dimY + 1. To be

precise, by comparing the coefficients of t
1
2
dimY+1, t

1
2
dimY , and t

1
2
dimY−1, respectively,

of both sides of the equation (4), it is easy to obtain

ΛXal+1 = (ϕ(Y )− ϕ(X))
1
2
dimY+1 ,

ΛXal + C1al+1 =

(
1

2
dimY + 1

)
[ω|X ](ϕ(Y )− ϕ(X))

1
2
dimY ,

ΛXal−1 + C1al + C2al+1 =

(1
2 dimY + 1

2

)
[ω|X ]2(ϕ(Y )− ϕ(X))

1
2
dimY−1,

12



respectively. Hence, we obtain

(8) al+1 =
1

ΛX
(ϕ(Y )− ϕ(X))

1
2
dimY+1 , al = al−1 = 0.

Now divide our proof into two subcases: l ≥ 1
2 dimY − 1 and l < 1

2 dimY − 1. So
suppose first that l ≥ 1

2 dimY − 1. Then we have dimX + dimY = dimM + 2l ≥
dimM + dimY − 2. Thus dimX ≥ dimM − 2. Since the circle action is assumed
to be effective and so dimX ≤ dimM − 2, this implies that dimX = dimM − 2 and
dimY = 2l + 2 ≥ 4. Moreover, since dimX = dimM − 2, note also that the S1-
equivariant Euler class eS

1
(NX) of NX becomes ΛXt+C1. By comparing the constant

coefficients of (7) which do not contain any t-factor, we have a0C1 = [ω|X ]
1
2
dimY+1.

Since the cohomological degree of C1 is two and dimY +2 ≥ 6, we should have a0 = 0.
Similarly, from the coefficients of t2 in the equation (7), we get

a1ΛX + a2C1 =

(1
2 dimY + 1

2

)
[ω|X ]

1
2
dimY−1(ϕ(Y )− ϕ(X))2.

This implies that a1 = 0, l = 1
2 dimY − 1 = 1. Thus it follows from (8) that

a2 =
1

ΛX
(ϕ(Y )− ϕ(X))

1
2
dimY+1 =

1

ΛX
(ϕ(Y )− ϕ(X))l+2 =

1

ΛX
(ϕ(Y )− ϕ(X))3,

which completes the proof for the case l ≥ 1
2 dimY − 1.

Finally, we suppose that l < 1
2 dimY −1. By comparing the coefficients of t

1
2
dimY−l

of the equation (7), we have

a0ΛX + a1C1 + · · ·+ asCs =

(1
2 dimY + 1
1
2 dimY − l

)
[ω|X ]l+1(ϕ(Y )− ϕ(X))

1
2
dimY−l

for some s ≤ m. This implies that aj = 0 for 0 ≤ j ≤ l and l + 2 ≤ j ≤ m, and it

follows from (8) that al+1 = 1
ΛX

(ϕ(Y ) − ϕ(X))
1
2
dimY+1, as required. This completes

the proof of Theorem 2.3.

In fact, the proof of Theorem 2.3 also shows that if the Hamiltonian circle action
satisfies the almost minimal dimension condition, then λ appearing in the identity (2)
is always of the form A0 +A1t with Ai ∈ H2i(X;R):

λ = A0 +A1t =
m

1
2
dimY+1

Λ2
X

(
(12 dimY + 1)ΛX

m
[ω|X ]− C1

)

+
m

1
2
dimY+1

ΛX
t.
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Thus Theorem 2.3 shows that if, in addition, λ is of pure type in the sense that λ lies
in R[t], then we have A0 = 0, i.e.,

(9) C1 =

(
1
2 dimY + 1

)
ΛX

m
[ω|X ].

Note that if the circle action is semifree, then C1 is equal to the first Chern class c1(NX)
of the normal bundle NX of X in M (refer to [9], Lemma 2.4 and Remark 1.9 (b)).
Hence we have the following practical criterion for a semifree Hamiltonian circle action
with the almost minimality condition to be of pure type.

Theorem 2.4. Let the circle act semifreely on a compact symplectic manifold (M,ω)
with moment map ϕ : M → R of pure type. Assume that the fixed point set consist of
only two connected components X and Y such that

dimX + dimY = dimM.

Then the first Chern class c1(NX) of the normal bundle NX satisfies

c1(NX) =

(
1
2 dimY + 1

)
ΛX

m
[ω|X ].

3 Topology of certain Hamiltonian S1-spaces

The goal of this section is to study topology of certain Hamiltonian S1-spaces with
almost minimality condition, which will be used to show our main theorems in Section
1. To do so, we prove the following proposition.

Proposition 3.1. Let the circle act on a compact symplectic manifold (M,ω) of di-
mension 2n (n ≥ 2) with moment map ϕ : M → R. Assume that the fixed point set
MS1

of the circle action has exactly two fixed connected components X and Y satisfying
the conditions (C1) and (C2). Then the following properties hold:

(a) H i(M ;R) ∼= H i(CPn;R) for all 0 ≤ i ≤ 2n except for i = n.

(b) Hn(M ;R) = R⊕2.

(c) The dimension of X is equal to that of Y , and the real dimension of M is zero
mod 4. In particular, this implies that as a ring H∗(X;R) is isomorphic to
H∗(Y ;R).

(d) Assume that the condition (C2) holds for any field, as well. If [ω] is an integral
class and the integer ϕ(X) − ϕ(Y ) is equal to ±1, then, as a ring, H∗(X;Z) =

Z[u]/u
1
2
dimX+1 and H∗(Y ;Z) = Z[v]/v

1
2
dimY+1, where u and v maps to [ω|X ]

and [ω|Y ], respectively.

14



Note that the Hamiltonian circle action on S2 × S2 = CP1 ×CP1 which acts on
the first factor by the standard rotation and acts trivially on the second factor satisfies
all the assumptions of Proposition 3.1. We remark that Proposition 3.1 (d) will not be
used in this paper.

Proof. To start the proof of the proposition, we first need the following easy lemma.

Lemma 3.2. Assume that the hypotheses of Proposition 3.1 hold, and that, in addition,
X is the minimal fixed connected component. Then the following properties hold.

(a) X is the unique fixed point component such that H i(M ;R) = H i(X;R) for all
0 ≤ i ≤ dimX − 1.

(b) Y is the unique fixed point component such that

Hj(M ;R) = Hj−dimX(Y ;R)

for all dimX + 1 ≤ j ≤ dimM .

(c) HdimX(M ;R) = R⊕2 = HdimY (M ;R).

Proof. Since ϕ is a perfect Morse-Bott function, we have

H∗(M ;R) = H∗(X;R)⊕H∗−2λY (Y ;R)

= H∗(X;R)⊕H∗−dimX(Y ;R),
(10)

where λY is half of the Morse-Bott index of Y and so 2λY = dimM − dimY = dimX.
If 0 ≤ i ≤ dimX − 1, then we have i − dimX ≤ −1 and so H i−dimX(Y ;R) = 0.

Thus (a) follows immediately from the equation (10).
On the other hand, if dimX + 1 ≤ j ≤ dimM , then we have

1 ≤ j − dimX ≤ dimM − dimX = dimY,

but clearly Hj(X;R) = 0 due to the dimensional reason of X, thus obtaining that we
are done with (b).

Finally, it is easy to see from (10) that

HdimX(M ;R) = HdimX(X;R)⊕HdimX−dimX(Y ;R) = R⊕2.

Next, apply the same argument to −ϕ instead of ϕ, we can get

HdimY (M ;R) = R⊕2.

This completes the proof of Lemma 3.2.

15



From the above discussion, it is now immediate to deduce the assertion (c) of
Proposition 3.1. To see it, note from Lemma 3.2 (a) and (b) that X and Y are the
unique fixed point components such thatH i(M ;R) = H i(X;R) for all 0 ≤ i ≤ dimX−
1 and such that Hj(M ;R) = Hj−dimX(Y ;R) for all j with dimX + 1 ≤ j ≤ dimM .
But, since HdimX(M ;R) = R⊕2 = HdimY (M ;R) by Lemma 3.2 (c), it follows from
the Poincaré duality of M that we should have dimX = dimY , as required. This
completes the proof of statement (c) of Proposition 3.1.

Also, we note that the following lemma ([9], Lemma 4.7) is true in our case.

Lemma 3.3. Let X be a compact manifold. Assume that H2i+1(X;Zp) vanishes for
all i and all primes p. Then H∗(X;Z) is torsion-free.

So, if u = [ω] is an integral class, then ũ can be taken as an integral class in
H2

S1(X;Z) such that ũ|X = u, ũ|y = t(ϕ(X) − ϕ(Y )) for all fixed points y ∈ Y .
Since ϕ(X) − ϕ(Y ) is equal to ±1, for any prime p there exists a fixed point y so
that ϕ(X) − ϕ(y) ̸= 0 mod p. By Lemma 4.6 of [9] and Lemma 3.3, this implies that
H∗(X;Z) is torsion-free. This completes the proof of Proposition 3.1 (d).

4 Chern classes of fixed connected componenets

The goal of this section is to collect some general facts which have already been proved
by Li and Tolman in [9] but also applies to our settings.

We begin with the following proposition which is similar to Proposition 5.1 in [9].

Proposition 4.1. Let the circle act on a compact symplectic manifold (M,ω) of di-
mension 2n (n ≥ 2) with moment map ϕ : M → R. Assume that the fixed point set
MS1

of the circle action has exactly two fixed connected components X and Y satisfying
the conditions (C1) and (C2). Given a regular value c of ϕ so that the intersection of
the fixed point set with ϕ−1(c,+∞) is equal to Y , for each 0 ≤ i ≤ dimY there exists
an isomorphism

κY,c : H
i
S1(Y ;Z)/eS

1
(NY ) → H i

S1(ϕ
−1(c);Z)

such that κX,c(α̃|Y ) = α̃|ϕ−1(c) for all α̃ ∈ H i
S1(M ;Z).

Proof. Since dimM − dimY = dimX = dimY in our case, Proposition 5.1 in [9]
continues to hold over integer coefficients for all 0 ≤ i ≤ dimY . This completes the
proof.

As a consequence of Proposition 4.1, we have the following corollary which is similar
to Corollary 5.2 in [9].

Corollary 4.2. Let the circle act on a compact symplectic manifold (M,ω) of dimen-
sion 2n (n ≥ 2) with moment map ϕ : M → R. Assume that the fixed point set
of the circle action has exactly two fixed connected components X and Y satisfying
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the conditions (C1) and (C2). For each 0 ≤ i ≤ dimX = dimY , there exists an
isomorphism

f : H i
S1(X;Z)/eS

1
(NX) → H i

S1(Y ;Z)/eS
1
(NY )

such that f(α̃|X) = α̃|Y for all α̃ ∈ H i
S1(M ;Z).

Moreover, the following properties hold:

f([ω|X ]) = [ω|Y ] + t(ϕ(Y )− ϕ(X)),

sf([ω|X ]) + (1− s)[ω|Y ] ̸= 0, s ∈ (0, 1).

Proof. In our case, since dimX = dimY , the minimum of dimM−dimX and dimM−
dimY is equal to dimX = dimY . Hence Corollary 5.2 in [9] proves Corollary 4.2 with
integer coefficients. This completes the proof.

Finally, we also need the following lemma which is similar to Lemma 5.4 in [9].

Lemma 4.3. Let the circle act on a compact symplectic manifold (M,ω) of dimension
2n (n ≥ 2) with moment map ϕ : M → R of pure type. Assume that the fixed point set
of the circle action has exactly two fixed connected components X and Y satisfying the
conditions (C1) and (C2). Under the natural isomorphism

H∗(X;R) → H∗
S1(X;R)/ ([ω|X ] + t(ϕ(Y )− ϕ(X))) ,

the total Chern class c(X) of the tangent bundle of X is given by

c(X) =

∏
λ(1 + λt)

cS1(NX)
,

where cS
1
(NX) denotes the S1-equivariant total Chern class of NX and the product is

taken over all weights λ with multiplicity in the normal bundle NY of Y .

Proof. The proof given below is a slight modification of that of Lemma 5.4 in [9]. Let
m = ϕ(Y ) − ϕ(X), u = [ω|X ], and v = [ω|Y ]. Then, as in the proof of Lemma 5.4 in
[9], there is a map

g : H∗
S1(X;R)/(u+mt, eS

1
(NX)) → H∗

S1({y};R)/t
1
2
dimX = R[t]/t

1
2
dimX

such that
g(u) = −mt and g(cS

1
(M)|X) = cS

1
(M)|y =

∏
λ

(1 + λt),

where the product is taken over all weights with multiplicity in the normal bundle NY

of Y in M .
Now, recall from Theorem 2.3 that

teS
1
(NX) = ΛX

(
t+

u

m

) 1
2
dimX+1

.
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Thus, teS
1
(NX) is a multiple of (mt+ u). This implies that

H∗
S1(X;R)/((mt+ u), eS

1
(NX)) = tH∗

S1(X;R)/(t(mt+ u), teS
1
(NX))

= tH∗
S1(X;R)/(mt+ u) = tH∗(X;R) = tR[t]/t

1
2
dimX+1

= R[t]/t
1
2
dimX .

Therefore, g is indeed an isomorphism. Moreover, since cS
1
(M)|X = c(X)cS

1
(NX), we

obtain

c(X) =

∏
λ(1 + λt)

cS1(NX)
,

as required.

5 Proof of Theorem 1.11: semifree case

The goal of this section is to prove Theorem 1.11 for the semifree case. We will do this
by contradiction, assuming that all the assumptions in Theorem 1.11 hold.

To do so, we shall also assume that ϕ(X) < ϕ(Y ) and that dimRX = 2n. Note
that, since the Hamiltonian circle action for dimensions greater than or equal to 6
is assumed to be of pure type, Theorem 2.3 applies to our settings. Then we have
rankCNX = rankCNY = n, and

(11) teS
1
(NX) =

(
t+

u

m

)n+1
.

Recall from Lemma 2.1 that m = ϕ(Y )−ϕ(X) is a positive integer, since [ω] is assumed
to be an integral class. Since cS

1
(NX) =

∏n(1+t+αi) with αi ∈ H2i(X;Z) for semifree
case, we should have

(12) t

n∏
(t+ αi) =

(
t+

u

m

)n+1
.

By comparing the coefficients of tj of both sides of (12) for 1 ≤ j ≤ n, we obtain

σ1(α1, · · · , αn) :=
n∑

i=1

αi =

(
n+ 1

1

)
u

m
,

σ2(α1, · · · , αn) :=
∑

1≤i<j≤n

αiαj =

(
n+ 1

2

)( u

m

)2
,

· · ·

σn(α1, · · · , αn) := α1α2 · · ·αn =

(
n+ 1

1

)( u

m

)n
.

(13)
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In case of four dimensions, due to the extra assumption about the primitive integral
class [ω], it generates the cohomology ring of X over integer coefficients. This argument
also applies to v = [ω|Y ]. On the other hand, in higher dimensions u and v generate the
cohomology rings of X and Y , respectively, without any extra assumption except that
[ω] is a primitive integral class. As mentioned in Section 1, this is due to Proposition
3.1 (2).

Now, if n = 1, then we have ku = α1 = 2 u
m for some integer k. Thus mk = 2,

which implies either m = 1 and k = 2 or m = 2 and k = 1. If m = 1 and k = 2, then
it follows from Lemma 4.3 that

c(X) =
(1− t)

cS1(NX)
=

(1− t)

(1 + t+ 2u)
= 1 + 2u,

where we put t = −2u in the last equality in order to obtain the last expression.
Similarly, if m = 2 and k = 1, then we obtain c(X) = 1+ u, which is impossible under
the condition H∗(X;Z) = Z[u]/u2. Note also that the action of the circle should be
semifree, since by Proposition 3.1 we have dimX = dimY and the action is assumed
to be effective. Hence it is easy to see that the following theorem (Theorem 1.8) holds.

Theorem 5.1. Let the circle act on a compact symplectic manifold (M,ω) of dimension
4 with moment map ϕ : M → R of pure type, where [ω] is a primitive integral class
in the strong sense. Assume that the fixed point set of the circle action has exactly
two fixed connected components X and Y satisfying (C1) and (C2). If we let m =
ϕ(Y )− ϕ(X) > 0, then the following properties hold:

(a) The circle action is always semifree and m = 1.

(b) H∗(X;Z) = Z[u]/u2 and H∗(Y ;Z) = Z[v]/v2, where u = [ω|X ] and v = [ω|Y ].

(c) c(X) = 1 + 2u and c(Y ) = 1− 2v.

(d) c(NX) = 1 + 2u and c(NY ) = 1− 2v.

Next, let us take n = 2. Then it follows from (13) that we have

(14) α1 + α2 = 3
u

m
, α1α2 = 3

( u

m

)2
.

Let α1 = k1u and α2 = k2u for some integers k1 and k2. Then it follows from (14) that

(k1 + k2)m = 3, k1k2m
2 = 3.

Thus we have m = 1, k1k2 = 3, and k1 + k2 = 3, which is a contradiction. Therefore,
we can conclude that there is no semifree Hamiltonian circle action of pure type on a
compact symplectic manifold of dimension 8 with exactly two fixed point components,
X and Y , satisfying the conditions (C1) and (C2).

Now, we are ready to prove our main theorem of this section which can be regarded
as an immediate consequence of (12).
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Theorem 5.2. Let the circle act semifreely on a compact symplectic manifold (M,ω)
of dimension 4n (n ≥ 2) with moment map ϕ : M → R of pure type, where [ω] is
a primitive integral class, whose fixed point set has exactly two fixed connected com-
ponents X and Y satisfying the condition (C1). Then there does not exist any such
Hamiltonian circle action on M such that both of X and Y have the same cohomology
rings of the complex projective spaces over integer coefficients.

Proof. We prove it by contradiction. By using a similar argument as above, it is easy
to obtain from the last equation of (13) that

(15) k1k2 · · · knmn = n+ 1,

where ki are integers. Since mn > (n + 1) for all n ≥ 2 and m ≥ 2, it follows from
the equation (15) that m = 1 and ki ̸= 0. Thus we have the system of equations
corresponding to (13), as follows:

σ1(k1, k2 · · · , kn) = k1 + k2 + · · ·+ kn =

(
n+ 1

1

)
,

σ2(k1, k2, · · · , kn) =
∑

1≤i<j≤n

kikj =

(
n+ 1

2

)
,

σ3(k1, k2, · · · , kn) =
∑

1≤i<j<p≤n

kikjkp =

(
n+ 1

3

)
,

· · · ,

σn(k1, k2, · · · , kn) =
n∏

i=1

ki =

(
n+ 1

n

)
.

(16)

Thus we have
∏n(1 + ki) = 2n+1 − 1, which implies that all the ki’s are even. Since

all symmetric functions σi of k1, k2, · · · , kn are positive by (16), note that all non-zero
integers ki should be also positive.

If n is even, then n+ 1 is odd, while
∑n

i=1 ki is even. This is a contradiction. So n
is odd. If n is of the form 4s+1, then it follows from the second equation of (16) that
the left hand side σ2(k1, k2, · · · , kn) is zero mod 4, while the right hand side

(
n+1
2

)
is

1 or 3 mod 4. So this case cannot occur, either. Finally, assume that n is of the form
4s+ 3. If s = 0, i.e., n = 3, then by the third symmetric function σ3 in (16) we have

8 ≤ σ3(k1, k2, k3) = k1k2k3 = 4,

since all ki are greater than or equal to 2, as noted above. This is a contradiction. On
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the other hand, if s > 0, then it follows from σ3 of (16) that we have

3σ3(k1, k2, · · · , kn)− (n+ 1)n(n− 1)

≥ 3 · 8 ·
(
4s+ 3

3

)
− (4s+ 4)(4s+ 3)(4s+ 2)

= 4(4s+ 3)(4s+ 2)(4s+ 1)− (4s+ 4)(4s+ 3)(4s+ 2)

= (4s+ 3)(4s+ 2)(4(4s+ 1)− (4s+ 4))

= 12s(4s+ 3)(4s+ 2) > 0.

So again we have a contradiction. This completes the proof of Theorem 5.2.

6 Proof of Theorem 1.11: non-semifree case

The goal of this section is to prove Theorem 1.11 for the non-semifree case. To do so,
we begin with this section by noticing all the results in Section 7 of the paper [9] still
hold to be true in our case, i.e., under two conditions (C1) and (C2). In particular,
the following proposition ([9], Proposition 7.9) continues to hold.

Proposition 6.1. Let the circle act on a compact symplectic manifold (M,ω) with
moment map ϕ : M → R. Assume that the fixed point set MS1

consists of exactly two
connected components X and Y and that b2i(X) = 1 for all 0 ≤ i ≤ 1

2 dimX. Then
the following properties hold.

(a) There are no points with stabilizer Zk for k > 2.

(b) If the circle action is not semifree, then dimMZ2 − dimY = 2 or dimM −
dimMZ2 = 2. Here both possibilities can occur.

As a consequence of Proposition 6.1 (2) and Proposition 3.1 or a direct argument,
it is easy to see that there cannot exist a non-semifree and effective Hamiltonian
circle action on a compact symplectic manifold of dimension 4 with exactly two fixed
connected components satisfying the almost minimal dimension condition.

Now, we want to rule out even the case of dimMZ2 −dimY = 2 in Proposition 6.1
(b).

Proposition 6.2. Let the circle act on a compact symplectic manifold (M,ω) of di-
mension 4n (n ≥ 2) with moment map ϕ : M → R of pure type, where [ω] is a
primitive integral class, whose fixed point set has exactly two connected components X
and Y satisfying the condition (C1). Then there does not exist any such Hamiltonian
circle action on M such that both of X and Y have the same cohomology rings of the
complex projective spaces over integer coefficients and such that dimMZ2 −dimY = 2.
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Proof. We prove it by contradiction. For simplicity, let dimRX = dimR Y = 2n. Since
dimMZ2 − dimY = 2, note that ΛX = 2 and dimM − dimMZ2 = 2n − 2 ≥ 2. Thus
it follows from Theorem 2.3 that we have

teS
1
(NX) = 2

(
t+

u

m

)n+1
,

where m = ϕ(Y )− ϕ(X). Since c1(N
MZ2

X ) = 0 by Lemma 7.6 in [9], we have

eS
1
(NMZ2

X ) = 2t+ c1(N
MZ2

X ) = 2t.

Now, it follows from the relation eS
1
(NX) = eS

1
(NMZ2

X )eS
1
(NMZ2 )|X that

eS
1
(NMZ2 )|X =

1

2t
eS

1
(NX) =

1

2t2
teS

1
(NX)

=
1

t2

(
t+

u

m

)n+1

= tn−1 + (n+ 1)
u

m
tn−2 + · · ·+ (n+ 1)

un

mn

1

t
.

(17)

On the other hand, since cS
1
(NMZ2 )|X =

∏n−1
i=1 (1 + t+ αi) for some αi ∈ H2(X;Z), it

follows from (17) that we have

n−1∏
i=1

(t+ αi) = eS
1
(NMZ2 )|X =

1

t2

(
t+

u

m

)n+1

= tn−1 + (n+ 1)
u

m
tn−2 + · · ·+ (n+ 1)

un

mn

1

t
, un ̸= 0.

(18)

However, the lowest non-zero degree of t in the left hand side of (18) is zero, which is
not equal to the lowest non-zero degree of t, that is now −1, in the right hand side of
(18). This is a contradiction, which completes the proof of Proposition 6.2.

Now, we are ready to prove Theorem 1.11 for non-semifree case.

Theorem 6.3. Let the circle act on a compact symplectic manifold (M,ω) of dimension
4n (n ≥ 2) with moment map ϕ : M → R of pure type, where [ω] is a primitive
integral class, whose fixed point set has exactly two fixed connected components X and
Y satisfying the condition (C1). Then there does not exist any such Hamiltonian circle
action on M such that both of X and Y have the same cohomology rings of the complex
projective spaces over integer coefficients.

Proof. We prove it by contradiction. In view of Propositions 6.1 (b) and 6.2, from
now on we assume that the circle action is not semifree, dimMZ2 − dimY > 2, and
dimM − dimMZ2 = 2. Then the following relations hold:

• teS
1
(NX) = ΛX

(
t+ u

m

)n+1
= 2n−1

(
t+ u

m

)n+1
.
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• eS
1
(NMZ2 )|X = t+ 2 u

m .

• teS
1
(NMZ2

X ) =
2n−1(t+ u

m)
n+1

(t+2 u
m
) ,

where we used Lemma 7.7 of [9] in order to obtain the second item. From [9], Lemma
2.4, it is easy to deduce that

tcS
1
(NMZ2

X ) =

(
1 + 2t+ 2 u

m

)n+1

4(t+ 2 u
m)

.

This in turn implies that

cS
1
(NX) =

(
1 + 2t+ 2 u

m

)n+1

4t(t+ 2 u
m)

(1 + t+ 2
u

m
).

It is also true from Lemma 4.3 that

c(X) =

∏
λ(1 + λt)

cS1(NX)
=

(1− t)(1− 2t)n−1

cS1(NX)

=
4t(1− t)(1− 2t)n−1(t+ 2 u

m)(
1 + 2t+ 2 u

m

)n+1
(1 + t+ 2 u

m)

= −4u2

m2

(
1 + 2

u

m

)n−1
,

where we put t = − u
m in the last equality in order to obtain the last expression.

Next, we use the calculation of Euler-Pincaré characteristic of X:

n+ 1 =
n∑

i=0

(−1)i dimH i(X;R)

=

∫
X
cn(X) =

∫
X
−4u2

m2
(n− 1)

2n−2un−2

mn−2

=

∫
X
−2n(n− 1)un

mn
.

Thus we have

(19) 1 =

∫
X
−2n(n− 1)un

(n+ 1)mn
,

which implies that − 2n(n−1)
(n+1)mnu

n is a primitive integral class in H2n(X;Z). Since we

assumed that [ω] is a primitive integral class, u also becomes a primitive integral class

([9], Lemma 4.10). Note also that, since un is a primitive class, mn(n+1)
2n(n−1) should be 1.
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Furthermore, from cS
1
(NMZ2 )|X = 1+ t+2 u

m , we see that 2
m should be an integer. So

we have either m = 1 or m = 2.
Finally, if m = 1, then 2n(n−1)

n+1 would be equal to one. But this does not make

sense, since 4(n − 1) ≤ 2n(n − 1) = n + 1 implies n ≤ 5
3 < 2. On the other hand, if

m = 2, then n−1
n+1 would be equal to one, which is also a contradiction. This completes

the proof of Theorem 6.3.
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