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Abstract

1 Introduction

The problem of sign change of Hecke eigenvalues (or Fourier coefficients) has been studied recently by many
researchers. In [4] it was proved that a nontrivial cusp form f(z) with real Fourier coefficients a(n) has infinitely
many sign changes. Further, many quantitative results for the number of sign changes for the Fourier coefficients
have been established. The best known result about Hecke eigenforms is that there is n� (k2N)3/8 such that
a(n) < 0. Same questions about Siegel forms and Hilbert forms have been studied.

On the other hand, the sign changes of the subsequence of the Fourier coefficients at prime numbers was
first studied by Ram Murty [10]. In this paper we give a bound for the first prime p such that the p-th Hecke
eigenvalue λf (p) is negative when f is a normalized cuspidal newform of level Γ0(N). We also give a bound for
the first sign change for general cusp forms, which improves the bound given by Choie and Kohnen [1] in the
level aspect in the case of prime level.

2 Preliminaries

In this section we briefly recall the basic tools to be used.

2.1 Some properties of L-functions

Let f be a normalized eigen cuspform of weight k ∈ Z for the group Γ0(N), having Fourier expansion∑∞
n=1 λf (n)n

k−1
2 e(nz) (e(z) := e2πiz). One can associate the Hecke L-function L(f, s) =

∑
n≥1

λf (n)
ns . It is

well-known that |λf (n)| ≤ 2 for p 6 |N , thanks to the proof of Ramanujan conjecture given by Deligne [2], and
hence L(f, s) converges for Re(s) > 1. It has the following Euler product expansion converging in the right
half-plane Re(s) > 1

L(f, s) =
∏
p 6|N

(1− αpp−s)−1(1− α−1p p−s)−1
∏
p|N

(1− βpp−s)−1

where |αp| = 1 and |βp| ≤ 1.

We recall the definitions of the Rankin-Selberg L-function for two normalized newforms f and g and

the symmetric square L-function of f . For given Fourier expansion f(z) =
∑∞
n=1 λf (n)n

k−1
2 e(nz) and g =∑∞

n=1 λg(n)n
k−1
2 e(nz) the Rankin-Selberg L-function L(f ⊗ g, s) is defined by

L(f ⊗ g, s) := ζ(2s)

∞∑
n=1

λf (n)λg(n)

ns
,

and the symmetric square L-function L(sym2f, s) is defined by

L(sym2f, s) := ζ(2s)

∞∑
n=1

λf (n2)

ns
,
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where ζ(s) is the Riemann zeta function. It is well known that two L-functions are related by the relation
L(f × f, s) = ζ(s)L(sym2f, s). Recall that L(sym2f, s) is entire, and L(f ⊗ g) is entire unless f = g, when
L(f ⊗ f, s) is analytic except at s = 1, which is a simple pole.

For the later purpose, we recall the convexity bounds for these L-functions(see [3, p.100, 131]):

L(f,
1

2
+ it)�ε q(f,

1

2
+ it)

1
4+ε, (2.1)

L(f ⊗ f, 1

2
+ it)� q(f ⊗ f, 1

2
+ it)

1
4+ε � q(f,

1

4
+ ε)1+4ε, (2.2)

where q(f, s) is the analytic conductor defined by q(f)
∏d
j=1(|s + κj | + 3), where q(f) is the conductor of L-

function and d is the degree of L coming from the gamma factor of the L-function π−ds
∏d
j=1 Γ(

s+κj

2 ) (for more
detail, see [3, p.94]). Note that the L-function of a given elliptic cusp form f of weight k and level N has the
property q(f, s) ≤ (k2N)(|s|+ |k|+ 3)2 and q(f ⊗ f, s) ≤ (k2N)4(|s|+ |k|+ 3)4. Note that q(f) ∼ k2N when f
is an elliptic cusp form of weight k and level N .

2.2 Perron type formula

In this subsection we briefly recall the Perron type formula. We refer as a general reference to [8].

Consider a L-function L(s) =
∑ a(n)

ns analytic on some right half-plane and fix a smooth function w defined
on [0,∞) such that supp w ⊂ [0, 2] and w ≡ 1 on [0, 1] and 0 ≤ w ≤ 1 on [1, 2]. Then for any positive x we
have the following Perron type formula∑

n≥1

a(n)w(
n

x
) =

1

2πi

∫ σ+i∞

σ−i∞
w̌(s)xsL(s)ds, (2.3)

where w̌ =
∫∞
0
w(x)xs−1dx is the Mellin transform of w and σ is any positive number greater than the absissa

of convergence σ0 of L(s). Note that w̌ is of rapid decay as Im(s) → ±∞, since w is compactly supported
smooth, and this guarantees the convergence of the integral given on the right.

3 First sign change problem at prime argument

Let f be a normalized Hecke eigennewform of weight k and levelN , with Fourier expansion
∑∞
n=1 λf (n)n

k−1
2 e(nz).

In this section we give a bound for the first sign change at prime arguments. The main idea is to compare the

Euler product expansion of L(f, s) =
∑∞
n=1

λf (n)
ns and that of another L-series defined by

M(f, s) :=

∞∑
n=1

n square−free

λf (n)

ns
=

∏
p

(1 + λf (p)p−s).

Then it can be seen that M(f,s)
L(f,s) ≤

∏
p(1 + 6p−2s)�s 1 when Re(s) > 1

2 . Then by (2.3) we have

∑
n≥1

n square−free

λf (n)w(
n

x
) =

1

2πi

∫ 1
2+ε+i∞

1
2+ε−i∞

w̌(s)xsM(f, s)ds

where ε is an arbitrary positive number. Then M(f,s)
L(f,s) �s 1 and the convexity bound for L(f, s) gives an upper

bound ∑
n≥1

n square−free

λf (n)w(
n

x
)� q(f, s)

1
4+εx

1
2+ε.

On the other hand, we can apply the same argument to L(f⊗f, s) to get a lower bound for
∑

n≥1
n square−free

λf (n)w(nx ).

Comparing the Euler product expansions of two L-series L(f⊗f, s) and M(f⊗f, s) :=
∑

n≥1
n square−free

λ2f (n)n−s,
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we get M(f⊗f,s)
L(f⊗f,s) �s 1 when Re(s) > 1

2 , and obtain

∑
n≥1

n square−free

λ2f (n)w(
n

x
) =

1

2πi

∫
σ

M(f ⊗ f, s)xsw̌(s)ds,

where σ = Re(s) > 1.

We need to translate the line of integration, but in this case L(f ⊗ f, s) has a simple pole at s = 1, and we
get the residue term to get

∑
n≥1

n square−free

λ2f (n)w(
n

x
) = Ress=1(M(f ⊗ f, s))xw̌(1) +

1

2πi

∫ 1
2+ε+i∞

1
2+ε−i∞

M(f ⊗ f, s)xsw̌(s)ds.

Therefore we conclude ∑
n≥1

n square−free

λ2f (n)w(
n

x
) = Ress=1(M(f ⊗ f, s))w̌(1)x+O(q1+εx

1
2+ε).

Note that for x� q2+ε the first term Ress=1(M(f ⊗ f, s))w̌(1)x dominates the right hand side of the equation.

On the other hand, suppose that λf (n) ≥ 0 for all square-free n ≤ x. Then the inequality |λf (n)| �η n
η

(for any η > 0) coming from Deligne’s bound, gives

xη
∑
n≥1

n square−free

λf (n)w(
n

x
)�η

∑
n≥1

n square−free

λ2f (n)w(
n

x
),

hence consequently we get∑
n≥1

n square−free

λf (n)w(
n

x
)�η Ress=1(M(f ⊗ f, s))x1−ηw̌(1) +O(q1+εx

1
2+ε−η).

Suppose x� q2+ε. Then we get

q(f, s)
1
4+εx

1
2+ε �ε

∑
n≥1

n square−free

λf (n)w(
n

x
)�η Ress=1(M(f ⊗ f, s))x1−ηw̌(1) +O(q1+εx

1
2+ε−η),

but then we get x � q
1
2+ε, contradicting the assumption x � q2+ε. Therefore we conclude that there is a

square-free n0 �ε q
2+ε such that λf (n0) < 0 and also there is a prime p�ε q

2+ε such that λf (p) < 0.
We summarize the result below.

Theorem 3.1. For a normalized Hecke eigennewform f =
∑∞
n=1 λf (n)n

k−1
2 e(nz) of weight k and level Γ0(N)

which is cuspidal, there is a prime p�ε (k2N)2+ε such that λf (p) is negative.

4 First sign change for general cusp forms of prime level

Let p be a prime. From the newform theory it is well-known that the space Sk(Γ0(p)) is decomposed into the
orthogonal direct sum(with respect to the Petersson inner product <,>) of the space of old forms Soldk (Γ0(p))
and the space of newforms Snewk (Γ0(p)), and we have Soldk (Γ0(p)) = Snewk (Γ0(1))|Vp, where Vp : g(z) 7→ g(pz).
Also note that < f, g >=< f |Vp, g|Vp > (see for instance [6, p.294]). Moreover it is known that(see for example
the introduction of [5]) there is an orthogonal basis consisting of that of Snewk (Γ0(p)) and the basis coming from
the orthogonal basis of Soldk (Γ0(p)) such that each form is a normalized Hecke eigenform in each space. Fix such
a basis f1, · · · , fm1 of Snewk (Γ0(p)) and fm1+1, · · · , fm1+m2 of Soldk (Γ0(p)) and let g1, · · · , gm2 be the orthogonal
basis of Snewk (Γ0(1)) such that gi|Vp = fm1+i for i = 1, · · · ,m2. Note that m1 +m2 ∼ kp.

Let f be a nonzero cusp form of weight k for the group Γ0(p) with the Fourier expansion f(z) =
∑
n≥1 αnn

k−1
2 e(nz)

and fj(z) =
∑
n≥1 λj(n)n

k−1
2 e(nz). Then if we write f(z) =

∑
ajfj(z) (aj ∈ C), it is easily seen that

αn =
∑
ajλj(n).
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Now we would like to get a bound for the first sign change for the general cusp forms. The main argument
is to use the Perron type formula (2.3) and the convexity bounds (2.1), (2.2) to each fj and pairs of fj . Even
though fm1+1, · · · , fm1+m2 are not Hecke eigenforms for the group Γ0(p) in general, we can obtain some bounds
coming from the convexity bounds of g1, · · · , gm2 .

Lemma 4.1. L(gi, s) = ps+
k−1
2 L(fm1+i, s) for i = 1, · · · ,m2.

Proof Comparing the Fourier expansions we get the result immediately. �

Now we find lower and upper bounds for the sum
∑

n≥1
n square−free

αnw(nx ) to get a bound for the first sign

change. As before, w is a compactly supported smooth function as in the section 3.

We begin by applying the (2.3) to f . We have∑
n≥1

αnw(
n

x
) =

∑
j

aj
2πi

∫ 1
2+i∞

1
2−i∞

w̌(s)xsL(fj , s)ds�
∑
j

|aj |q
1
2+εx1/2. (4.1)

On the other hand, let us consider the sum
∑
n≥1 α

2
nw(nx ). Since αn =

∑
ajλj(n) it is easily seen that∑

n≥1

α2
nw(

n

x
) =

∑
j

a2j
∑
n≥1

λ2j (n)w(
n

x
) +

∑
l 6=m

alam
∑
n≥1

λl(n)λm(n)w(
n

x
).

For the first sum, we can obtain the bound
∑
n≥1 λ

2
j (n)� xq−ε using the Perron type formula (2.3), hence

we know that ∑
j

a2j
∑
n≥1

λ2j (n)w(
n

x
)�

∑
a2jxq

−ε,

for x� q.

And for the second term, note that L(fl⊗ fm, s) doesn’t have a pole if l 6= m, since the fact that L(fl⊗ fm)
is entire if < fl, fm >= 0 was proved by Rankin [9]. Then we have∑

l 6=m

alam
∑
n≥1

λl(n)λm(n)w(
n

x
) = O(q1+εx1/2).

Suppose that α ≥ 0 for all n < x. Then |λj(n)| � nε for each j, we have

αn ≤ (
∑
|aj |) max

j
|λj(n)| � xε(

∑
j

|aj |).

Then by combining above estimates, for x� q, the following inequality holds:

(
∑
j

|aj |xε)(
∑
n≥1

αnw(
n

x
))�

∑
n≥1

α2
nw(

n

x
)� (

∑
a2j )q

−εx+O(q1+εx1/2(
∑
|aj |)2).

On the other hand, from Cauchy inequality, we have
∑
j 1

∑
a2j ≥ (

∑
j |aj |)2. Hence using m1 + m2 ∼ kp

we see that the first term dominates the right hand side of the inequaility when x� q2+2εk2p2, and moreover
we get the inequality ∑

n≥1

αnw(
n

x
)�

∑
j a

2
j∑

j |aj |
q−εx1−ε. (4.2)

Then combining (4.1), (4.2) we conclude that x� (kp)2+εq1+ε must be satisfied. But this is contradictory
to the bound x� q2+2εk2p2 since q ∼ k2p, hence there is an n� q2+2εk2p2 such that αn < 0.

We summarize the result below.

Theorem 4.1. Let p be a prime number. Then for a general cusp form f =
∑∞
n=1 a(n)e(nz) of weight k and

level Γ0(p) there is an n�ε k
6+εp4+ε such that a(n) is negative(or positive).

Remark 1. For a general level N , to obtain an orthogonal basis is non-trivial because it is not in general easy
to get the orthogonality of the spaces of oldforms, and in the square-free level case, Choie-Kohnen [1] used a
special orthogonal basis to get the first sign change bound for general cusp forms. But in this paper we have
chosen a prime level p to avoid this issue.

4



Acknowledgment

We appreciate Professor Jakyung Koo for encouraging us to study this problem and showing us the continuous
interest. We also appriciate Junehyuk Jung for considerably helping us to attack this problem, especially by
teaching the basic arguments of the analytic number theory. Seokho Jin was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(No. 2014001824).

References

[1] Choie, Y, Kohnen, W, The first sign change of Fourier coefficients of cusp forms. Amer. J. Math. 131
(2009), no. 2, 517–543.

[2] Deligne, P, La conjecture de Weil. I. (French) Inst. Hautes tudes Sci. Publ. Math. No. 43 (1974), 273–307.

[3] H. Iwaniec,E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications,
53. American Mathematical Society, Providence, RI, 2004. xii+615 pp. ISBN: 0-8218-3633-1

[4] M. Knopp, W. Kohnen, Pribitkin, On the signs of Fourier coefficients of cusp forms, Ramanujan Journal,
7, 269–277, 2003.

[5] W. Kohnen, C. Weiß, Orthogonality and Hecke operators. Proc. Indian Acad. Sci. Math. Sci. 119 (2009),
no. 3, 283–286.

[6] W. Li, Newforms and functional equations. Math. Ann. 212 (1975), 285-315.

[7] W. Li, L-series of Rankin type and their functional equations. Math. Ann. 244 (1979), no. 2, 135-166.

[8] H.L. Montgomery, R.C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in
Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.

[9] R. Rankin, Contributions to the theroy of Ramanujan’s function τ(n) and similar arithmetical functions.
II, Proc. Camb. Phil. Soc. 35, 357–372.

[10] Ram Murty M, Oscillations of the Fourier coefficients of modular forms, Math. Ann. 262 (1983) 431–446.

5


